Jason0829 commited on
Commit
22a48ab
1 Parent(s): 09711da

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -13
app.py CHANGED
@@ -1,13 +1,11 @@
1
  #!/usr/bin/env python
2
  # coding: utf-8
3
 
4
- # In[7]:
5
-
6
-
7
  import gradio as gr
8
  import pandas as pd
9
  from sentence_transformers import SentenceTransformer, util
10
  import torch
 
11
 
12
  # 載入語義搜索模型
13
  model_checkpoint = "sickcell69/cti-semantic-search-minilm"
@@ -20,7 +18,7 @@ data = pd.read_json(data_path)
20
 
21
  # 載入嵌入文件
22
  embeddings_path = 'corpus_embeddings.pt'
23
- corpus_embeddings = torch.load(embeddings_path, map_location=torch.device('cpu')))
24
 
25
  def semantic_search(query):
26
  query_embedding = model.encode(query, convert_to_tensor=True)
@@ -33,21 +31,28 @@ def semantic_search(query):
33
 
34
  return "\n".join(results)
35
 
 
 
 
 
 
 
 
36
  iface = gr.Interface(
37
  fn=semantic_search,
38
- inputs="text",
39
  outputs="text",
40
  title="語義搜索應用",
41
- description="輸入一個查詢,然後模型將返回最相似的結果。"
 
42
  )
43
 
 
 
 
 
 
 
44
  if __name__ == "__main__":
45
  #iface.launch()
46
  iface.launch(share=True) #網頁跑不出來
47
-
48
-
49
- # In[ ]:
50
-
51
-
52
-
53
-
 
1
  #!/usr/bin/env python
2
  # coding: utf-8
3
 
 
 
 
4
  import gradio as gr
5
  import pandas as pd
6
  from sentence_transformers import SentenceTransformer, util
7
  import torch
8
+ import openai # New import for Whisper API
9
 
10
  # 載入語義搜索模型
11
  model_checkpoint = "sickcell69/cti-semantic-search-minilm"
 
18
 
19
  # 載入嵌入文件
20
  embeddings_path = 'corpus_embeddings.pt'
21
+ corpus_embeddings = torch.load(embeddings_path)
22
 
23
  def semantic_search(query):
24
  query_embedding = model.encode(query, convert_to_tensor=True)
 
31
 
32
  return "\n".join(results)
33
 
34
+ # New function to transcribe audio using Whisper API
35
+ def transcribe_audio(audio_file):
36
+ audio_bytes = audio_file.read()
37
+ response = openai.Audio.transcribe("whisper-1", audio_bytes)
38
+ return response['text']
39
+
40
+ # Modified interface to include audio input
41
  iface = gr.Interface(
42
  fn=semantic_search,
43
+ inputs=["text", "file"], # Add audio file input
44
  outputs="text",
45
  title="語義搜索應用",
46
+ description="輸入一個查詢或上傳一個音頻文件,然後模型將返回最相似的結果。",
47
+ examples=["example_audio.wav"] # Example audio file
48
  )
49
 
50
+ # New function to handle both text and audio inputs
51
+ def handle_input(input_text, audio_file):
52
+ if audio_file is not None:
53
+ input_text = transcribe_audio(audio_file)
54
+ return semantic_search(input_text)
55
+
56
  if __name__ == "__main__":
57
  #iface.launch()
58
  iface.launch(share=True) #網頁跑不出來