import json import os import torch from sentence_transformers import SentenceTransformer import faiss import numpy as np import gradio as gr import openai # 設置OpenAI API密鑰 openai.api_key = 'sk-zK6OrDxP5DvDdAQqnR_nEuUL3UrZf_4W7qvYj1uphjT3BlbkFJdmZAxlxUCFv92NnnMwSB15FhpmiDZSfG2QPueobSQA' def load_or_create_model_and_embeddings(model_name, data_file, output_dir): model_path = os.path.join(output_dir, 'saved_model') embeddings_path = os.path.join(output_dir, 'corpus_embeddings.pt') if os.path.exists(model_path) and os.path.exists(embeddings_path): print("載入已保存的模型和嵌入...") model = SentenceTransformer(model_path) embeddings = torch.load(embeddings_path) with open(data_file, 'r', encoding='utf-8') as f: data = json.load(f) else: print("創建新的模型和嵌入...") model = SentenceTransformer(model_name) with open(data_file, 'r', encoding='utf-8') as f: data = json.load(f) texts = [item['text'] for item in data] embeddings = model.encode(texts, convert_to_tensor=True) print("保存模型和嵌入...") model.save(model_path) torch.save(embeddings, embeddings_path) return model, embeddings, data # 設置參數 model_name = 'sentence-transformers/all-MiniLM-L6-v2' data_file = 'labeled_cti_data.json' output_dir = '.' # 載入或創建模型和嵌入 model, embeddings, data = load_or_create_model_and_embeddings(model_name, data_file, output_dir) # 創建 Faiss 索引 dimension = embeddings.shape[1] index = faiss.IndexFlatL2(dimension) index.add(embeddings.cpu().numpy().astype('float32')) def get_entity_groups(entities): return list(set(entity['entity_group'] for entity in entities)) def semantic_search(query, top_k=3): query_vector = model.encode([query], convert_to_tensor=True) distances, indices = index.search(query_vector.cpu().numpy().astype('float32'), top_k) results = [] for i, idx in enumerate(indices[0]): results.append({ 'text': data[idx]['text'], 'similarity_score': 1 - distances[0][i] / 2, 'entity_groups': get_entity_groups(data[idx]['entities']) }) return results def search_and_format(query): results = semantic_search(query) formatted_results = "" for i, result in enumerate(results, 1): formatted_results += f"{i}. 相似度分數: {result['similarity_score']:.4f}\n" formatted_results += f" 情資: {result['text']}\n" formatted_results += f" 命名實體: {', '.join(result['entity_groups'])}\n\n" return formatted_results def transcribe_audio(audio): try: # 將音頻文件上傳到Whisper API with open(audio, "rb") as audio_file: transcript = openai.Audio.transcribe("whisper-1", audio_file) return transcript.text except Exception as e: return f"轉錄時發生錯誤: {str(e)}" def audio_to_search(audio): transcription = transcribe_audio(audio) return search_and_format(transcription), transcription # 示例問題 example_queries = [ "Tell me about recent cyber attacks from Russia", "What APT groups are targeting Ukraine?", "Explain the Log4j vulnerability", "Chinese state-sponsored hacking activities", "How does Ransomware-as-a-Service work?", "Latest North Korean cryptocurrency thefts", "Describe the SolarWinds supply chain attack", "What is the Lazarus Group known for?", "Common attack vectors used against critical infrastructure", "Pegasus spyware capabilities and targets" ] # 自定義 CSS custom_css = """ .container {display: flex; flex-direction: row;} .input-column {flex: 1; padding-right: 20px;} .output-column {flex: 2;} .examples-list {display: flex; flex-wrap: wrap; gap: 10px;} .examples-list > * {flex-basis: calc(50% - 5px);} """ # 創建Gradio界面 with gr.Blocks(css=custom_css) as iface: gr.Markdown("# AskCTI") gr.Markdown("輸入查詢或使用語音輸入以搜索相關威脅情報,將顯示前3個最相關的結果,包括實體組。") with gr.Row(equal_height=True): with gr.Column(scale=1, min_width=300): query_input = gr.Textbox(lines=3, label="文字查詢") with gr.Row(): submit_btn = gr.Button("查詢") audio_input = gr.Audio(source="microphone", type="filepath", label="語音輸入") gr.Markdown("### 範例查詢") for i in range(0, len(example_queries), 2): with gr.Row(): for j in range(2): if i + j < len(example_queries): gr.Button(example_queries[i+j]).click( lambda x: x, inputs=[gr.Textbox(value=example_queries[i+j], visible=False)], outputs=[query_input] ) with gr.Column(scale=2): output = gr.Textbox(lines=20, label="搜索結果") transcription_output = gr.Textbox(lines=3, label="語音轉錄結果") submit_btn.click(search_and_format, inputs=[query_input], outputs=[output]) audio_input.change(audio_to_search, inputs=[audio_input], outputs=[output, transcription_output]) # 啟動Gradio界面 iface.launch()