siddhartharya
commited on
Commit
•
2f50c94
1
Parent(s):
ebcf536
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
-
import gradio as gr
|
2 |
import requests
|
|
|
3 |
import os
|
4 |
-
from bs4 import BeautifulSoup # For scraping company and role info
|
5 |
|
6 |
# Load API keys securely from environment variables
|
7 |
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY") # Proxycurl API key
|
8 |
groq_api_key = os.getenv("GROQ_CLOUD_API_KEY") # Groq Cloud API key
|
|
|
9 |
|
10 |
class EmailAgent:
|
11 |
def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin):
|
@@ -23,7 +23,7 @@ class EmailAgent:
|
|
23 |
self.company_info = None
|
24 |
self.role_description = None
|
25 |
|
26 |
-
# Reason: Decide what information is needed
|
27 |
def reason_about_data(self):
|
28 |
print("Reasoning: Deciding what data we need...")
|
29 |
if not self.linkedin_url:
|
@@ -56,55 +56,29 @@ class EmailAgent:
|
|
56 |
self.skills = ["Adaptable", "Hardworking"]
|
57 |
self.experiences = ["Worked across various industries"]
|
58 |
|
59 |
-
# Action: Fetch company information via
|
60 |
-
def
|
61 |
if not self.company_name:
|
62 |
print("Action: No company name provided, using default company info.")
|
63 |
self.company_info = "A leading company in its field."
|
64 |
else:
|
65 |
-
print(f"Action: Fetching company info for {self.company_name}.")
|
66 |
-
headers = {"Authorization": f"Bearer {
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
69 |
if response.status_code == 200:
|
70 |
-
|
71 |
-
self.company_info =
|
|
|
72 |
else:
|
73 |
-
print(f"Error: Unable to fetch company info
|
74 |
self.company_info = "A leading company in its field."
|
75 |
|
76 |
-
# Action: Scrape the company's website for role-specific information or use defaults
|
77 |
-
def scrape_role_from_website(self):
|
78 |
-
print(f"Action: Scraping role description from the company's website for {self.role}.")
|
79 |
-
if not self.company_name:
|
80 |
-
print("Error: No company name or URL provided for scraping.")
|
81 |
-
return False
|
82 |
-
|
83 |
-
# Try scraping the website for role descriptions
|
84 |
-
try:
|
85 |
-
response = requests.get(f"https://{self.company_name}.com/careers")
|
86 |
-
if response.status_code == 200:
|
87 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
88 |
-
role_descriptions = soup.find_all(string=lambda text: self.role.lower() in text.lower())
|
89 |
-
if role_descriptions:
|
90 |
-
self.role_description = role_descriptions[0]
|
91 |
-
print(f"Found role description: {self.role_description}")
|
92 |
-
return True
|
93 |
-
else:
|
94 |
-
print(f"No specific role description found on the website for {self.role}.")
|
95 |
-
return False
|
96 |
-
else:
|
97 |
-
print(f"Error: Unable to reach company's website at {self.company_name}.com.")
|
98 |
-
return False
|
99 |
-
except Exception as e:
|
100 |
-
print(f"Error during scraping: {e}")
|
101 |
-
return False
|
102 |
-
|
103 |
-
# Action: Use default logic for role description if no role is available
|
104 |
-
def use_default_role_description(self):
|
105 |
-
print(f"Action: Using default logic for the role of {self.role}.")
|
106 |
-
self.role_description = f"The role of {self.role} at {self.company_name} involves leadership and management."
|
107 |
-
|
108 |
# Reflection: Check if we have enough data to generate the email
|
109 |
def reflect_on_data(self):
|
110 |
print("Reflection: Do we have enough data?")
|
@@ -116,7 +90,7 @@ class EmailAgent:
|
|
116 |
def generate_email(self):
|
117 |
print("Action: Generating the email with the gathered information.")
|
118 |
|
119 |
-
#
|
120 |
prompt = f"""
|
121 |
Write a professional email applying for the {self.role} position at {self.company_name}.
|
122 |
|
@@ -161,10 +135,7 @@ class EmailAgent:
|
|
161 |
def run(self):
|
162 |
self.reason_about_data() # Reasoning step
|
163 |
self.fetch_linkedin_data() # Fetch LinkedIn data
|
164 |
-
self.
|
165 |
-
# Scrape the company's website for role-specific information or use defaults
|
166 |
-
if not self.scrape_role_from_website():
|
167 |
-
self.use_default_role_description()
|
168 |
# Reflect on whether the data is sufficient
|
169 |
if self.reflect_on_data():
|
170 |
return self.generate_email() # Final action: generate email
|
|
|
|
|
1 |
import requests
|
2 |
+
import gradio as gr
|
3 |
import os
|
|
|
4 |
|
5 |
# Load API keys securely from environment variables
|
6 |
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY") # Proxycurl API key
|
7 |
groq_api_key = os.getenv("GROQ_CLOUD_API_KEY") # Groq Cloud API key
|
8 |
+
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY") # Firecrawl API key
|
9 |
|
10 |
class EmailAgent:
|
11 |
def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin):
|
|
|
23 |
self.company_info = None
|
24 |
self.role_description = None
|
25 |
|
26 |
+
# Reason: Decide what information is needed
|
27 |
def reason_about_data(self):
|
28 |
print("Reasoning: Deciding what data we need...")
|
29 |
if not self.linkedin_url:
|
|
|
56 |
self.skills = ["Adaptable", "Hardworking"]
|
57 |
self.experiences = ["Worked across various industries"]
|
58 |
|
59 |
+
# Action: Fetch company information via Firecrawl API
|
60 |
+
def fetch_company_info_with_firecrawl(self):
|
61 |
if not self.company_name:
|
62 |
print("Action: No company name provided, using default company info.")
|
63 |
self.company_info = "A leading company in its field."
|
64 |
else:
|
65 |
+
print(f"Action: Fetching company info for {self.company_name} using Firecrawl.")
|
66 |
+
headers = {"Authorization": f"Bearer {firecrawl_api_key}"}
|
67 |
+
firecrawl_url = "https://api.firecrawl.dev/v1/scrape"
|
68 |
+
data = {
|
69 |
+
"url": f"https://{self.company_name}.com",
|
70 |
+
"patterns": ["description", "about", "careers", "company overview"]
|
71 |
+
}
|
72 |
+
|
73 |
+
response = requests.post(firecrawl_url, json=data, headers=headers)
|
74 |
if response.status_code == 200:
|
75 |
+
firecrawl_data = response.json()
|
76 |
+
self.company_info = firecrawl_data.get("description", "No detailed company info available.")
|
77 |
+
print(f"Company info fetched: {self.company_info}")
|
78 |
else:
|
79 |
+
print(f"Error: Unable to fetch company info via Firecrawl. Using default info.")
|
80 |
self.company_info = "A leading company in its field."
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
# Reflection: Check if we have enough data to generate the email
|
83 |
def reflect_on_data(self):
|
84 |
print("Reflection: Do we have enough data?")
|
|
|
90 |
def generate_email(self):
|
91 |
print("Action: Generating the email with the gathered information.")
|
92 |
|
93 |
+
# Dynamic LLM prompt
|
94 |
prompt = f"""
|
95 |
Write a professional email applying for the {self.role} position at {self.company_name}.
|
96 |
|
|
|
135 |
def run(self):
|
136 |
self.reason_about_data() # Reasoning step
|
137 |
self.fetch_linkedin_data() # Fetch LinkedIn data
|
138 |
+
self.fetch_company_info_with_firecrawl() # Fetch company data using Firecrawl
|
|
|
|
|
|
|
139 |
# Reflect on whether the data is sufficient
|
140 |
if self.reflect_on_data():
|
141 |
return self.generate_email() # Final action: generate email
|