Spaces:
Build error
Build error
Commit
·
a05ef67
1
Parent(s):
fb0de80
Added app.py
Browse files
app.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""With os FASHION-EYE_VITON-HD Integrated Full Model Final.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
"""
|
6 |
+
|
7 |
+
# !rm -rf sample_data
|
8 |
+
# !rm -rf fashion-eye-try-on/
|
9 |
+
|
10 |
+
import sys
|
11 |
+
from threading import Thread
|
12 |
+
import gradio as gr
|
13 |
+
import torch
|
14 |
+
from collections import OrderedDict
|
15 |
+
from PIL import Image
|
16 |
+
import torch.nn.functional as F
|
17 |
+
import torchvision.transforms as transforms
|
18 |
+
from cloth_segmentation.networks import U2NET
|
19 |
+
import gdown
|
20 |
+
from os.path import exists, join, basename, splitext
|
21 |
+
import subprocess
|
22 |
+
import os
|
23 |
+
BASE_DIR = "/home/user/app/fashion-eye-try-on"
|
24 |
+
|
25 |
+
os.system(
|
26 |
+
f"git clone https://huggingface.co/spaces/sidharthism/fashion-eye-try-on {BASE_DIR}")
|
27 |
+
|
28 |
+
# !pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
|
29 |
+
# !pip install -r /content/fashion-eye-try-on/requirements.txt
|
30 |
+
os.system("pip install torch>=1.6.0 torchvision -f https://download.pytorch.org/whl/cu92/torch_stable.html")
|
31 |
+
os.system("pip install opencv-python torchgeometry gdown Pillow")
|
32 |
+
|
33 |
+
os.system(f"cd {BASE_DIR}")
|
34 |
+
|
35 |
+
# Download and save checkpoints for cloth mask generation
|
36 |
+
os.system(f"rm -rf {BASE_DIR}/cloth_segmentation/checkpoints/")
|
37 |
+
os.system(
|
38 |
+
f"gdown --id 1mhF3yqd7R-Uje092eypktNl-RoZNuiCJ -O {BASE_DIR}/cloth_segmentation/checkpoints/")
|
39 |
+
|
40 |
+
os.system(
|
41 |
+
f"git clone https://github.com/shadow2496/VITON-HD {BASE_DIR}/VITON-HD")
|
42 |
+
|
43 |
+
# checkpoints
|
44 |
+
os.system(
|
45 |
+
f"gdown 1RM4OthSM6V4r7kWCu8SbPIPY14Oz8B2u -O {BASE_DIR}/VITON-HD/checkpoints/alias_final.pth")
|
46 |
+
os.system(
|
47 |
+
f"gdown 1MBHBddaAs7sy8W40jzLmNL83AUh035F1 -O {BASE_DIR}/VITON-HD/checkpoints/gmm_final.pth")
|
48 |
+
os.system(
|
49 |
+
f"gdown 1MBHBddaAs7sy8W40jzLmNL83AUh035F1 -O {BASE_DIR}/VITON-HD/checkpoints/gmm_final.pth")
|
50 |
+
os.system(
|
51 |
+
f"gdown 17U1sooR3mVIbe8a7rZuFIF3kukPchHfZ -O {BASE_DIR}/VITON-HD/checkpoints/seg_final.pth")
|
52 |
+
# test data
|
53 |
+
os.system(
|
54 |
+
f"gdown 1ncEHn_6liOot8sgt3A2DOFJBffvx8tW8 -O {BASE_DIR}/VITON-HD/datasets/test_pairs.txt")
|
55 |
+
os.system(
|
56 |
+
f"gdown 1ZA2C8yMOprwc0TV4hvrt0X-ljZugrClq -O {BASE_DIR}/VITON-HD/datasets/test.zip")
|
57 |
+
|
58 |
+
os.system(
|
59 |
+
f"unzip {BASE_DIR}/VITON-HD/datasets/test.zip -d {BASE_DIR}/VITON-HD/datasets/")
|
60 |
+
|
61 |
+
# @title To clear all the already existing test data
|
62 |
+
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/image
|
63 |
+
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/image-parse
|
64 |
+
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/cloth
|
65 |
+
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/cloth-mask
|
66 |
+
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/openpose-img
|
67 |
+
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/openpose-json
|
68 |
+
|
69 |
+
"""Paddle"""
|
70 |
+
|
71 |
+
os.system(
|
72 |
+
f"git clone https://huggingface.co/spaces/sidharthism/pipeline_paddle {BASE_DIR}/pipeline_paddle")
|
73 |
+
|
74 |
+
# Required for paddle and gradio (Jinja2 dependency)
|
75 |
+
os.system("pip install paddlepaddle-gpu pymatting")
|
76 |
+
os.system(f"pip install -r {BASE_DIR}/pipeline_paddle/requirements.txt")
|
77 |
+
|
78 |
+
os.system(f"rm -rf {BASE_DIR}/pipeline_paddle/models")
|
79 |
+
if not os.path.exists(f"{BASE_DIR}/pipeline_paddle/models/ppmatting-hrnet_w18-human_1024.pdparams"):
|
80 |
+
if not os.path.exists(f"{BASE_DIR}/pipeline_paddle/models"):
|
81 |
+
os.mkdir(f"{BASE_DIR}/pipeline_paddle/models")
|
82 |
+
os.system(
|
83 |
+
f"wget https://paddleseg.bj.bcebos.com/matting/models/ppmatting-hrnet_w18-human_1024.pdparams -O {BASE_DIR}/pipeline_paddle/models/ppmatting-hrnet_w18-human_1024.pdparams")
|
84 |
+
# !wget "https://bj.bcebos.com/paddleseg/dygraph/hrnet_w18_ssld.tar.gz" -O "/content/fashion-eye-try-on/pipeline_paddle/models/hrnet_w18_ssld.tar.gz"
|
85 |
+
|
86 |
+
"""Initialization
|
87 |
+
|
88 |
+
Pose estimator - open pose
|
89 |
+
"""
|
90 |
+
|
91 |
+
# Clone openpose model repo
|
92 |
+
# os.system(f"git clone https://github.com/CMU-Perceptual-Computing-Lab/openpose.git {BASE_DIR}/openpose")
|
93 |
+
|
94 |
+
|
95 |
+
# @ Building and Installation of openpose model
|
96 |
+
|
97 |
+
|
98 |
+
project_name = f"{BASE_DIR}/openpose"
|
99 |
+
print(project_name)
|
100 |
+
if not exists(project_name):
|
101 |
+
# see: https://github.com/CMU-Perceptual-Computing-Lab/openpose/issues/949
|
102 |
+
# install new CMake becaue of CUDA10
|
103 |
+
os.system(
|
104 |
+
f"wget -q https://cmake.org/files/v3.13/cmake-3.13.0-Linux-x86_64.tar.gz")
|
105 |
+
os.system(
|
106 |
+
f"tar xfz cmake-3.13.0-Linux-x86_64.tar.gz --strip-components=1 -C /usr/local")
|
107 |
+
# clone openpose
|
108 |
+
os.system(
|
109 |
+
f"cd {BASE_DIR} && git clone -q --depth 1 https://github.com/CMU-Perceptual-Computing-Lab/openpose.git")
|
110 |
+
os.system(
|
111 |
+
"sed -i 's/execute_process(COMMAND git checkout master WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}\/3rdparty\/caffe)/execute_process(COMMAND git checkout f019d0dfe86f49d1140961f8c7dec22130c83154 WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}\/3rdparty\/caffe)/g' %s/openpose/CMakeLists.txt" % (BASE_DIR, ))
|
112 |
+
# install system dependencies
|
113 |
+
os.system("apt-get -qq install -y libatlas-base-dev libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev protobuf-compiler libgflags-dev libgoogle-glog-dev liblmdb-dev opencl-headers ocl-icd-opencl-dev libviennacl-dev")
|
114 |
+
# build openpose
|
115 |
+
print("Building openpose ... May take nearly 15 mins to build ...")
|
116 |
+
os.system(f"cd {BASE_DIR}/openpose && rm -rf {BASE_DIR}/openpose/build || true && mkdir {BASE_DIR}/openpose/build && cd {BASE_DIR}/openpose/build && cmake .. && make -j`nproc`")
|
117 |
+
print("Openpose successfully build and installed.")
|
118 |
+
# subprocess.Popen(f"cd {BASE_DIR}/openpose && rm -rf {BASE_DIR}/openpose/build || true && mkdir {BASE_DIR}/openpose/build && cd {BASE_DIR}/openpose/build && cmake .. && make -j`nproc`")
|
119 |
+
# subprocess.call(["cd", f"{BASE_DIR}/openpose"])
|
120 |
+
# subprocess.check_output(["rm", "-rf", f"{BASE_DIR}/openpose/build || true"])
|
121 |
+
# subprocess.check_output(["mkdir", f"{BASE_DIR}/openpose/build"])
|
122 |
+
# subprocess.check_output(["cd", f"{BASE_DIR}/openpose/build"])
|
123 |
+
# subprocess.check_output(["cmake", ".."])
|
124 |
+
# subprocess.check_output(["make","-j`nproc`"])
|
125 |
+
|
126 |
+
# !cd {BASE_DIR}/openpose && rm -rf {BASE_DIR}/openpose/build || true && mkdir {BASE_DIR}/openpose/build && cd {BASE_DIR}/openpose/build && cmake .. && make -j`nproc`
|
127 |
+
|
128 |
+
"""Self correction human parsing"""
|
129 |
+
|
130 |
+
os.system(
|
131 |
+
f"git clone https://github.com/PeikeLi/Self-Correction-Human-Parsing.git {BASE_DIR}/human_parse")
|
132 |
+
|
133 |
+
os.system(f"cd {BASE_DIR}/human_parse")
|
134 |
+
os.system(f"mkdir {BASE_DIR}/human_parse/checkpoints")
|
135 |
+
# !mkdir inputs
|
136 |
+
# !mkdir outputs
|
137 |
+
|
138 |
+
dataset = 'lip'
|
139 |
+
|
140 |
+
|
141 |
+
dataset_url = 'https://drive.google.com/uc?id=1k4dllHpu0bdx38J7H28rVVLpU-kOHmnH'
|
142 |
+
output = f'{BASE_DIR}/human_parse/checkpoints/final.pth'
|
143 |
+
gdown.download(dataset_url, output, quiet=False)
|
144 |
+
|
145 |
+
# For human parse
|
146 |
+
os.system("pip install ninja")
|
147 |
+
|
148 |
+
"""Preprocessing"""
|
149 |
+
|
150 |
+
# png to jpg
|
151 |
+
|
152 |
+
|
153 |
+
def convert_to_jpg(path):
|
154 |
+
from PIL import Image
|
155 |
+
import os
|
156 |
+
if os.path.exists(path):
|
157 |
+
cl = Image.open(path)
|
158 |
+
jpg_path = path[:-4] + ".jpg"
|
159 |
+
cl.save(jpg_path)
|
160 |
+
|
161 |
+
|
162 |
+
def resize_img(path):
|
163 |
+
from PIL import Image
|
164 |
+
print(path)
|
165 |
+
im = Image.open(path)
|
166 |
+
im = im.resize((768, 1024), Image.BICUBIC)
|
167 |
+
im.save(path)
|
168 |
+
|
169 |
+
|
170 |
+
def remove_ipynb_checkpoints():
|
171 |
+
import os
|
172 |
+
os.system(
|
173 |
+
f"rm -rf {BASE_DIR}/VITON-HD/datasets/test/image/.ipynb_checkpoints")
|
174 |
+
os.system(
|
175 |
+
f"rm -rf {BASE_DIR}/VITON-HD/datasets/test/cloth/.ipynb_checkpoints")
|
176 |
+
os.system(
|
177 |
+
f"rm -rf {BASE_DIR}/VITON-HD/datasets/test/cloth-mask/.ipynb_checkpoints")
|
178 |
+
|
179 |
+
# os.chdir('/content/fashion-eye-try-on')
|
180 |
+
|
181 |
+
|
182 |
+
def preprocess():
|
183 |
+
remove_ipynb_checkpoints()
|
184 |
+
for path in os.listdir(f'{BASE_DIR}/VITON-HD/datasets/test/image/'):
|
185 |
+
resize_img(f'{BASE_DIR}/VITON-HD/datasets/test/image/{path}')
|
186 |
+
for path in os.listdir(f'{BASE_DIR}/VITON-HD/datasets/test/cloth/'):
|
187 |
+
resize_img(f'{BASE_DIR}/VITON-HD/datasets/test/cloth/{path}')
|
188 |
+
# for path in os.listdir('/content/fashion-eye-try-on/VITON-HD/datasets/test/cloth-mask/'):
|
189 |
+
# resize_img(f'/content/fashion-eye-try-on/VITON-HD/datasets/test/cloth-mask/{path}')
|
190 |
+
|
191 |
+
|
192 |
+
"""Paddle - removing background"""
|
193 |
+
|
194 |
+
# PPMatting hrnet 1024
|
195 |
+
# --fg_estimate True - for higher quality output but slower prediction
|
196 |
+
|
197 |
+
|
198 |
+
def upload_remove_background_and_save_person_image(person_img):
|
199 |
+
# !export CUDA_VISIBLE_DEVICES=0
|
200 |
+
person_img = person_img.resize((768, 1024), Image.BICUBIC)
|
201 |
+
if os.path.exists(f"{BASE_DIR}/pipeline_paddle/image/person.jpg"):
|
202 |
+
os.remove(f"{BASE_DIR}/pipeline_paddle/image/person.jpg")
|
203 |
+
person_img.save(f"{BASE_DIR}/pipeline_paddle/image/person.jpg")
|
204 |
+
# resize_img(f'/content/fashion-eye-try-on/pipeline_paddle/image/person.jpg')
|
205 |
+
os.system(f"cd {BASE_DIR}/pipeline_paddle/")
|
206 |
+
os.system(f"python {BASE_DIR}/pipeline_paddle/bg_replace.py \
|
207 |
+
--config {BASE_DIR}/pipeline_paddle/configs/ppmatting/ppmatting-hrnet_w18-human_1024.yml \
|
208 |
+
--model_path {BASE_DIR}/pipeline_paddle/models/ppmatting-hrnet_w18-human_1024.pdparams \
|
209 |
+
--image_path {BASE_DIR}/pipeline_paddle/image/person.jpg \
|
210 |
+
--background 'w' \
|
211 |
+
--save_dir {BASE_DIR}/VITON-HD/datasets/test/image \
|
212 |
+
--fg_estimate True")
|
213 |
+
# --save_dir /content/fashion-eye-try-on/pipeline_paddle/output \
|
214 |
+
try:
|
215 |
+
convert_to_jpg(f"{BASE_DIR}/VITON-HD/datasets/test/image/person.png")
|
216 |
+
# os.remove("/content/fashion-eye-try-on/pipeline_paddle/output/person_alpha.png")
|
217 |
+
os.remove(f"{BASE_DIR}/VITON-HD/datasets/test/image/person_alpha.png")
|
218 |
+
# os.remove("/content/fashion-eye-try-on/pipeline_paddle/output/person_rgba.png")
|
219 |
+
os.remove(f"{BASE_DIR}/VITON-HD/datasets/test/image/person_rgba.png")
|
220 |
+
os.system(f"cd {BASE_DIR}")
|
221 |
+
except Exception as e:
|
222 |
+
print(e)
|
223 |
+
os.system(f"cd {BASE_DIR}")
|
224 |
+
|
225 |
+
|
226 |
+
# @title If multiple GPU available,uncomment and try this code
|
227 |
+
os.system("export CUDA_VISIBLE_DEVICES=0")
|
228 |
+
|
229 |
+
# Openpose pose estimation
|
230 |
+
# Ubuntu and Mac
|
231 |
+
|
232 |
+
|
233 |
+
def estimate_pose():
|
234 |
+
os.system(f"cd {BASE_DIR}/openpose && ./build/examples/openpose/openpose.bin --image_dir {BASE_DIR}/VITON-HD/datasets/test/image --write_json {BASE_DIR}/VITON-HD/datasets/test/openpose-json/ --display 0 --face --hand --render_pose 0")
|
235 |
+
os.system(f"cd {BASE_DIR}/openpose && ./build/examples/openpose/openpose.bin --image_dir {BASE_DIR}/VITON-HD/datasets/test/image --write_images {BASE_DIR}/VITON-HD/datasets/test/openpose-img/ --display 0 --hand --render_pose 1 --disable_blending true")
|
236 |
+
os.system(f"cd {BASE_DIR}")
|
237 |
+
# !cd /content/fashion-eye-try-on/openpose && ./build/examples/openpose/openpose.bin --image_dir /content/fashion-eye-try-on/pipeline_paddle/output/ --write_images /content/fashion-eye-try-on/openpose_img/ --display 0 --hand --render_pose 1 --disable_blending true
|
238 |
+
|
239 |
+
# Run self correction human parser
|
240 |
+
# !python3 /content/fashion-eye-try-on/human_parse/simple_extractor.py --dataset 'lip' --model-restore '/content/fashion-eye-try-on/human_parse/checkpoints/final.pth' --input-dir '/content/fashion-eye-try-on/image' --output-dir '/content/fashion-eye-try-on/VITON-HD/datasets/test/image-parse'
|
241 |
+
|
242 |
+
|
243 |
+
def generate_human_segmentation_map():
|
244 |
+
# remove_ipynb_checkpoints()
|
245 |
+
os.system(f"python3 {BASE_DIR}/human_parse/simple_extractor.py --dataset 'lip' --model-restore '{BASE_DIR}/human_parse/checkpoints/final.pth' --input-dir '{BASE_DIR}/VITON-HD/datasets/test/image' --output-dir '{BASE_DIR}/VITON-HD/datasets/test/image-parse'")
|
246 |
+
|
247 |
+
# model_image = os.listdir('/content/fashion-eye-try-on/VITON-HD/datasets/test/image')
|
248 |
+
# cloth_image = os.listdir('/content/fashion-eye-try-on/VITON-HD/datasets/test/cloth')
|
249 |
+
# pairs = zip(model_image, cloth_image)
|
250 |
+
|
251 |
+
# with open('/content/fashion-eye-try-on/VITON-HD/datasets/test_pairs.txt', 'w') as file:
|
252 |
+
# for model, cloth in pairs:
|
253 |
+
# file.write(f"{model} {cloth}\n")
|
254 |
+
|
255 |
+
|
256 |
+
def generate_test_pairs_txt():
|
257 |
+
with open(f"{BASE_DIR}/VITON-HD/datasets/test_pairs.txt", 'w') as file:
|
258 |
+
file.write(f"person.jpg cloth.jpg\n")
|
259 |
+
|
260 |
+
# VITON-HD
|
261 |
+
# Transfer the cloth to the model
|
262 |
+
|
263 |
+
|
264 |
+
def generate_viton_hd():
|
265 |
+
os.system(f"python {BASE_DIR}/VITON-HD/test.py --name output --dataset_list {BASE_DIR}/VITON-HD/datasets/test_pairs.txt --dataset_dir {BASE_DIR}/VITON-HD/datasets/ --checkpoint_dir {BASE_DIR}/VITON-HD/checkpoints --save_dir {BASE_DIR}/")
|
266 |
+
|
267 |
+
|
268 |
+
# To resolve ModuleNotFoundError during imports
|
269 |
+
if BASE_DIR not in sys.path:
|
270 |
+
sys.path.append(BASE_DIR)
|
271 |
+
sys.path.append(f"{BASE_DIR}/cloth_segmentation")
|
272 |
+
|
273 |
+
|
274 |
+
device = 'cuda' if torch.cuda.is_available() else "cpu"
|
275 |
+
|
276 |
+
if device == 'cuda':
|
277 |
+
torch.cuda.empty_cache()
|
278 |
+
|
279 |
+
# for hugging face
|
280 |
+
# BASE_DIR = "/home/path/app"
|
281 |
+
|
282 |
+
image_dir = 'cloth'
|
283 |
+
result_dir = 'cloth_mask'
|
284 |
+
checkpoint_path = 'cloth_segmentation/checkpoints/cloth_segm_u2net_latest.pth'
|
285 |
+
|
286 |
+
|
287 |
+
def load_checkpoint_mgpu(model, checkpoint_path):
|
288 |
+
if not os.path.exists(checkpoint_path):
|
289 |
+
print("----No checkpoints at given path----")
|
290 |
+
return
|
291 |
+
model_state_dict = torch.load(
|
292 |
+
checkpoint_path, map_location=torch.device("cpu"))
|
293 |
+
new_state_dict = OrderedDict()
|
294 |
+
for k, v in model_state_dict.items():
|
295 |
+
name = k[7:] # remove `module.`
|
296 |
+
new_state_dict[name] = v
|
297 |
+
|
298 |
+
model.load_state_dict(new_state_dict)
|
299 |
+
print("----checkpoints loaded from path: {}----".format(checkpoint_path))
|
300 |
+
return model
|
301 |
+
|
302 |
+
|
303 |
+
class Normalize_image(object):
|
304 |
+
"""Normalize given tensor into given mean and standard dev
|
305 |
+
Args:
|
306 |
+
mean (float): Desired mean to substract from tensors
|
307 |
+
std (float): Desired std to divide from tensors
|
308 |
+
"""
|
309 |
+
|
310 |
+
def __init__(self, mean, std):
|
311 |
+
assert isinstance(mean, (float))
|
312 |
+
if isinstance(mean, float):
|
313 |
+
self.mean = mean
|
314 |
+
|
315 |
+
if isinstance(std, float):
|
316 |
+
self.std = std
|
317 |
+
|
318 |
+
self.normalize_1 = transforms.Normalize(self.mean, self.std)
|
319 |
+
self.normalize_3 = transforms.Normalize(
|
320 |
+
[self.mean] * 3, [self.std] * 3)
|
321 |
+
self.normalize_18 = transforms.Normalize(
|
322 |
+
[self.mean] * 18, [self.std] * 18)
|
323 |
+
|
324 |
+
def __call__(self, image_tensor):
|
325 |
+
if image_tensor.shape[0] == 1:
|
326 |
+
return self.normalize_1(image_tensor)
|
327 |
+
|
328 |
+
elif image_tensor.shape[0] == 3:
|
329 |
+
return self.normalize_3(image_tensor)
|
330 |
+
|
331 |
+
elif image_tensor.shape[0] == 18:
|
332 |
+
return self.normalize_18(image_tensor)
|
333 |
+
|
334 |
+
else:
|
335 |
+
assert "Please set proper channels! Normlization implemented only for 1, 3 and 18"
|
336 |
+
|
337 |
+
|
338 |
+
def get_palette(num_cls):
|
339 |
+
""" Returns the color map for visualizing the segmentation mask.
|
340 |
+
Args:
|
341 |
+
num_cls: Number of classes
|
342 |
+
Returns:
|
343 |
+
The color map
|
344 |
+
"""
|
345 |
+
n = num_cls
|
346 |
+
palette = [0] * (n * 3)
|
347 |
+
for j in range(0, n):
|
348 |
+
lab = j
|
349 |
+
palette[j * 3 + 0] = 0
|
350 |
+
palette[j * 3 + 1] = 0
|
351 |
+
palette[j * 3 + 2] = 0
|
352 |
+
i = 0
|
353 |
+
while lab:
|
354 |
+
palette[j * 3 + 0] = 255
|
355 |
+
palette[j * 3 + 1] = 255
|
356 |
+
palette[j * 3 + 2] = 255
|
357 |
+
# palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
|
358 |
+
# palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
|
359 |
+
# palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
|
360 |
+
i += 1
|
361 |
+
lab >>= 3
|
362 |
+
return palette
|
363 |
+
|
364 |
+
|
365 |
+
def generate_cloth_mask(img_dir, output_dir, chkpt_dir):
|
366 |
+
global image_dir
|
367 |
+
global result_dir
|
368 |
+
global checkpoint_path
|
369 |
+
image_dir = img_dir
|
370 |
+
result_dir = output_dir
|
371 |
+
checkpoint_path = chkpt_dir
|
372 |
+
transforms_list = []
|
373 |
+
transforms_list += [transforms.ToTensor()]
|
374 |
+
transforms_list += [Normalize_image(0.5, 0.5)]
|
375 |
+
transform_rgb = transforms.Compose(transforms_list)
|
376 |
+
|
377 |
+
net = U2NET(in_ch=3, out_ch=4)
|
378 |
+
with torch.no_grad():
|
379 |
+
net = load_checkpoint_mgpu(net, checkpoint_path)
|
380 |
+
net = net.to(device)
|
381 |
+
net = net.eval()
|
382 |
+
|
383 |
+
palette = get_palette(4)
|
384 |
+
|
385 |
+
images_list = sorted(os.listdir(image_dir))
|
386 |
+
for image_name in images_list:
|
387 |
+
img = Image.open(os.path.join(
|
388 |
+
image_dir, image_name)).convert('RGB')
|
389 |
+
img_size = img.size
|
390 |
+
img = img.resize((768, 768), Image.BICUBIC)
|
391 |
+
image_tensor = transform_rgb(img)
|
392 |
+
image_tensor = torch.unsqueeze(image_tensor, 0)
|
393 |
+
|
394 |
+
output_tensor = net(image_tensor.to(device))
|
395 |
+
output_tensor = F.log_softmax(output_tensor[0], dim=1)
|
396 |
+
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1]
|
397 |
+
output_tensor = torch.squeeze(output_tensor, dim=0)
|
398 |
+
output_tensor = torch.squeeze(output_tensor, dim=0)
|
399 |
+
output_arr = output_tensor.cpu().numpy()
|
400 |
+
|
401 |
+
output_img = Image.fromarray(output_arr.astype('uint8'), mode='L')
|
402 |
+
output_img = output_img.resize(img_size, Image.BICUBIC)
|
403 |
+
|
404 |
+
output_img.putpalette(palette)
|
405 |
+
output_img = output_img.convert('L')
|
406 |
+
output_img.save(os.path.join(result_dir, image_name[:-4]+'.jpg'))
|
407 |
+
|
408 |
+
|
409 |
+
os.system(f"cd {BASE_DIR}")
|
410 |
+
|
411 |
+
|
412 |
+
def upload_resize_generate_cloth_mask_and_move_to_viton_hd_test_inputs(cloth_img):
|
413 |
+
os.system(f"cd {BASE_DIR}")
|
414 |
+
cloth_img = cloth_img.resize((768, 1024), Image.BICUBIC)
|
415 |
+
cloth_img.save(f"{BASE_DIR}/cloth/cloth.jpg")
|
416 |
+
cloth_img.save(f"{BASE_DIR}/VITON-HD/datasets/test/cloth/cloth.jpg")
|
417 |
+
try:
|
418 |
+
generate_cloth_mask(f"{BASE_DIR}/cloth", f"{BASE_DIR}/cloth_mask",
|
419 |
+
f"{BASE_DIR}/cloth_segmentation/checkpoints/cloth_segm_u2net_latest.pth")
|
420 |
+
cloth_mask_img = Image.open(f"{BASE_DIR}/cloth_mask/cloth.jpg")
|
421 |
+
cloth_mask_img.save(
|
422 |
+
f"{BASE_DIR}/VITON-HD/datasets/test/cloth-mask/cloth.jpg")
|
423 |
+
except Exception as e:
|
424 |
+
print(e)
|
425 |
+
|
426 |
+
|
427 |
+
# Gradio
|
428 |
+
os.system("pip install gradio")
|
429 |
+
|
430 |
+
# import cv2
|
431 |
+
IMAGEPATH = '/content/fashion-eye-try-on/VITON-HD/datasets/test/image'
|
432 |
+
CLOTHPATH = '/content/fashion-eye-try-on/VITON-HD/datasets/test/cloth'
|
433 |
+
CLOTHMASKPATH = '/content/fashion-eye-try-on/VITON-HD/datasets/test/image'
|
434 |
+
|
435 |
+
|
436 |
+
def fashion_eye_tryon(person_img, cloth_img):
|
437 |
+
result_img = person_img
|
438 |
+
# img.save(IMAGEPATH + "person.jpg")
|
439 |
+
# dress.save(CLOTHPATH + "cloth.jpg")
|
440 |
+
|
441 |
+
# txt = open("/content/VITON-HD/datasets/test_pairs.txt", "a")
|
442 |
+
# txt.write("person_img.jpg dress_img.jpg\n")
|
443 |
+
# txt.close()
|
444 |
+
# # result
|
445 |
+
# print(person_img.info, cloth_img.info)
|
446 |
+
# p_t1 = Thread(target=upload_remove_background_and_save_person_image, args=(person_img, ))
|
447 |
+
# c_t2 = Thread(target=upload_resize_generate_cloth_mask_and_move_to_viton_hd_test_inputs, args=(cloth_img, ))
|
448 |
+
# p_t1.start()
|
449 |
+
# c_t2.start()
|
450 |
+
# p_t1.join()
|
451 |
+
# c_t2.join()
|
452 |
+
# Estimate pose
|
453 |
+
try:
|
454 |
+
upload_resize_generate_cloth_mask_and_move_to_viton_hd_test_inputs(
|
455 |
+
cloth_img)
|
456 |
+
upload_remove_background_and_save_person_image(person_img)
|
457 |
+
remove_ipynb_checkpoints()
|
458 |
+
estimate_pose()
|
459 |
+
# Generate human parse
|
460 |
+
remove_ipynb_checkpoints()
|
461 |
+
generate_human_segmentation_map()
|
462 |
+
generate_test_pairs_txt()
|
463 |
+
remove_ipynb_checkpoints()
|
464 |
+
generate_viton_hd()
|
465 |
+
for p in ["/content/fashion-eye-try-on/output/person_cloth.jpg", "/content/fashion-eye-try-on/output/person.jpg_cloth.jpg"]:
|
466 |
+
if os.path.exists(p):
|
467 |
+
result_img = Image.open(p)
|
468 |
+
except Exception as e:
|
469 |
+
print(e)
|
470 |
+
return
|
471 |
+
return result_img
|
472 |
+
|
473 |
+
|
474 |
+
# res = fashion_eye_tryon("", "")
|
475 |
+
# res.show()
|
476 |
+
gr.Interface(fn=fashion_eye_tryon,
|
477 |
+
inputs=[gr.Image(type="pil", label="Your image"),
|
478 |
+
gr.Image(type="pil", label="Dress")],
|
479 |
+
outputs="image"
|
480 |
+
).launch(debug=True, inbrowser=True, share=True)
|
481 |
+
|
482 |
+
# !pip freeze > /content/requirements_final.txt
|