from .networks import U2NET import torchvision.transforms as transforms import torch.nn.functional as F import os from PIL import Image from collections import OrderedDict import torch device = 'cuda' if torch.cuda.is_available() else "cpu" if device == 'cuda': torch.cuda.empty_cache() # for hugging face BASE_DIR = "/home/path/app" # BASE_DIR = os.getcwd() image_dir = 'cloth' result_dir = 'cloth_mask' checkpoint_path = 'cloth_segmentation/checkpoints/cloth_segm_u2net_latest.pth' def load_checkpoint_mgpu(model, checkpoint_path): if not os.path.exists(checkpoint_path): print("----No checkpoints at given path----") return model_state_dict = torch.load( checkpoint_path, map_location=torch.device("cpu")) new_state_dict = OrderedDict() for k, v in model_state_dict.items(): name = k[7:] # remove `module.` new_state_dict[name] = v model.load_state_dict(new_state_dict) print("----checkpoints loaded from path: {}----".format(checkpoint_path)) return model class Normalize_image(object): """Normalize given tensor into given mean and standard dev Args: mean (float): Desired mean to substract from tensors std (float): Desired std to divide from tensors """ def __init__(self, mean, std): assert isinstance(mean, (float)) if isinstance(mean, float): self.mean = mean if isinstance(std, float): self.std = std self.normalize_1 = transforms.Normalize(self.mean, self.std) self.normalize_3 = transforms.Normalize( [self.mean] * 3, [self.std] * 3) self.normalize_18 = transforms.Normalize( [self.mean] * 18, [self.std] * 18) def __call__(self, image_tensor): if image_tensor.shape[0] == 1: return self.normalize_1(image_tensor) elif image_tensor.shape[0] == 3: return self.normalize_3(image_tensor) elif image_tensor.shape[0] == 18: return self.normalize_18(image_tensor) else: assert "Please set proper channels! Normlization implemented only for 1, 3 and 18" def get_palette(num_cls): """ Returns the color map for visualizing the segmentation mask. Args: num_cls: Number of classes Returns: The color map """ n = num_cls palette = [0] * (n * 3) for j in range(0, n): lab = j palette[j * 3 + 0] = 0 palette[j * 3 + 1] = 0 palette[j * 3 + 2] = 0 i = 0 while lab: palette[j * 3 + 0] = 255 palette[j * 3 + 1] = 255 palette[j * 3 + 2] = 255 # palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) # palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) # palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) i += 1 lab >>= 3 return palette def generate_cloth_mask(): transforms_list = [] transforms_list += [transforms.ToTensor()] transforms_list += [Normalize_image(0.5, 0.5)] transform_rgb = transforms.Compose(transforms_list) net = U2NET(in_ch=3, out_ch=4) with torch.no_grad(): net = load_checkpoint_mgpu(net, checkpoint_path) net = net.to(device) net = net.eval() palette = get_palette(4) images_list = sorted(os.listdir(image_dir)) for image_name in images_list: img = Image.open(os.path.join( image_dir, image_name)).convert('RGB') img_size = img.size img = img.resize((768, 768), Image.Resampling.BICUBIC) image_tensor = transform_rgb(img) image_tensor = torch.unsqueeze(image_tensor, 0) output_tensor = net(image_tensor.to(device)) output_tensor = F.log_softmax(output_tensor[0], dim=1) output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1] output_tensor = torch.squeeze(output_tensor, dim=0) output_tensor = torch.squeeze(output_tensor, dim=0) output_arr = output_tensor.cpu().numpy() output_img = Image.fromarray(output_arr.astype('uint8'), mode='L') output_img = output_img.resize(img_size, Image.Resampling.BICUBIC) output_img.putpalette(palette) output_img = output_img.convert('L') output_img.save(os.path.join(result_dir, image_name[:-4]+'.jpg')) if __name__ == '__main__': generate_cloth_mask()