Spaces:
Configuration error
Configuration error
File size: 8,773 Bytes
1ab1a09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import numpy as np
import paddle
from paddle.distributed.parallel import ParallelEnv
from visualdl import LogWriter
from paddleseg.utils.progbar import Progbar
import paddleseg.utils.logger as logger
class CallbackList(object):
"""
Container abstracting a list of callbacks.
Args:
callbacks (list[Callback]): List of `Callback` instances.
"""
def __init__(self, callbacks=None):
callbacks = callbacks or []
self.callbacks = [c for c in callbacks]
def append(self, callback):
self.callbacks.append(callback)
def set_params(self, params):
for callback in self.callbacks:
callback.set_params(params)
def set_model(self, model):
for callback in self.callbacks:
callback.set_model(model)
def set_optimizer(self, optimizer):
for callback in self.callbacks:
callback.set_optimizer(optimizer)
def on_iter_begin(self, iter, logs=None):
"""Called right before processing a batch.
"""
logs = logs or {}
for callback in self.callbacks:
callback.on_iter_begin(iter, logs)
self._t_enter_iter = time.time()
def on_iter_end(self, iter, logs=None):
"""Called at the end of a batch.
"""
logs = logs or {}
for callback in self.callbacks:
callback.on_iter_end(iter, logs)
self._t_exit_iter = time.time()
def on_train_begin(self, logs=None):
"""Called at the beginning of training.
"""
logs = logs or {}
for callback in self.callbacks:
callback.on_train_begin(logs)
def on_train_end(self, logs=None):
"""Called at the end of training.
"""
logs = logs or {}
for callback in self.callbacks:
callback.on_train_end(logs)
def __iter__(self):
return iter(self.callbacks)
class Callback(object):
"""Abstract base class used to build new callbacks.
"""
def __init__(self):
self.validation_data = None
def set_params(self, params):
self.params = params
def set_model(self, model):
self.model = model
def set_optimizer(self, optimizer):
self.optimizer = optimizer
def on_iter_begin(self, iter, logs=None):
pass
def on_iter_end(self, iter, logs=None):
pass
def on_train_begin(self, logs=None):
pass
def on_train_end(self, logs=None):
pass
class BaseLogger(Callback):
def __init__(self, period=10):
super(BaseLogger, self).__init__()
self.period = period
def _reset(self):
self.totals = {}
def on_train_begin(self, logs=None):
self.totals = {}
def on_iter_end(self, iter, logs=None):
logs = logs or {}
#(iter - 1) // iters_per_epoch + 1
for k, v in logs.items():
if k in self.totals.keys():
self.totals[k] += v
else:
self.totals[k] = v
if iter % self.period == 0 and ParallelEnv().local_rank == 0:
for k in self.totals:
logs[k] = self.totals[k] / self.period
self._reset()
class TrainLogger(Callback):
def __init__(self, log_freq=10):
self.log_freq = log_freq
def _calculate_eta(self, remaining_iters, speed):
if remaining_iters < 0:
remaining_iters = 0
remaining_time = int(remaining_iters * speed)
result = "{:0>2}:{:0>2}:{:0>2}"
arr = []
for i in range(2, -1, -1):
arr.append(int(remaining_time / 60**i))
remaining_time %= 60**i
return result.format(*arr)
def on_iter_end(self, iter, logs=None):
if iter % self.log_freq == 0 and ParallelEnv().local_rank == 0:
total_iters = self.params["total_iters"]
iters_per_epoch = self.params["iters_per_epoch"]
remaining_iters = total_iters - iter
eta = self._calculate_eta(remaining_iters, logs["batch_cost"])
current_epoch = (iter - 1) // self.params["iters_per_epoch"] + 1
loss = logs["loss"]
lr = self.optimizer.get_lr()
batch_cost = logs["batch_cost"]
reader_cost = logs["reader_cost"]
logger.info(
"[TRAIN] epoch={}, iter={}/{}, loss={:.4f}, lr={:.6f}, batch_cost={:.4f}, reader_cost={:.4f} | ETA {}"
.format(current_epoch, iter, total_iters, loss, lr, batch_cost,
reader_cost, eta))
class ProgbarLogger(Callback):
def __init__(self):
super(ProgbarLogger, self).__init__()
def on_train_begin(self, logs=None):
self.verbose = self.params["verbose"]
self.total_iters = self.params["total_iters"]
self.target = self.params["total_iters"]
self.progbar = Progbar(target=self.target, verbose=self.verbose)
self.seen = 0
self.log_values = []
def on_iter_begin(self, iter, logs=None):
#self.seen = 0
if self.seen < self.target:
self.log_values = []
def on_iter_end(self, iter, logs=None):
logs = logs or {}
self.seen += 1
for k in self.params['metrics']:
if k in logs:
self.log_values.append((k, logs[k]))
#if self.verbose and self.seen < self.target and ParallelEnv.local_rank == 0:
#print(self.log_values)
if self.seen < self.target:
self.progbar.update(self.seen, self.log_values)
class ModelCheckpoint(Callback):
def __init__(self,
save_dir,
monitor="miou",
save_best_only=False,
save_params_only=True,
mode="max",
period=1):
super(ModelCheckpoint, self).__init__()
self.monitor = monitor
self.save_dir = save_dir
self.save_best_only = save_best_only
self.save_params_only = save_params_only
self.period = period
self.iters_since_last_save = 0
if mode == "min":
self.monitor_op = np.less
self.best = np.Inf
elif mode == "max":
self.monitor_op = np.greater
self.best = -np.Inf
else:
raise RuntimeError("`mode` is neither \"min\" nor \"max\"!")
def on_train_begin(self, logs=None):
self.verbose = self.params["verbose"]
save_dir = self.save_dir
if not os.path.isdir(save_dir):
if os.path.exists(save_dir):
os.remove(save_dir)
os.makedirs(save_dir)
def on_iter_end(self, iter, logs=None):
logs = logs or {}
self.iters_since_last_save += 1
current_save_dir = os.path.join(self.save_dir, "iter_{}".format(iter))
current_save_dir = os.path.abspath(current_save_dir)
#if self.iters_since_last_save % self.period and ParallelEnv().local_rank == 0:
#self.iters_since_last_save = 0
if iter % self.period == 0 and ParallelEnv().local_rank == 0:
if self.verbose > 0:
print("iter {iter_num}: saving model to {path}".format(
iter_num=iter, path=current_save_dir))
paddle.save(self.model.state_dict(),
os.path.join(current_save_dir, 'model.pdparams'))
if not self.save_params_only:
paddle.save(self.optimizer.state_dict(),
os.path.join(current_save_dir, 'model.pdopt'))
class VisualDL(Callback):
def __init__(self, log_dir="./log", freq=1):
super(VisualDL, self).__init__()
self.log_dir = log_dir
self.freq = freq
def on_train_begin(self, logs=None):
self.writer = LogWriter(self.log_dir)
def on_iter_end(self, iter, logs=None):
logs = logs or {}
if iter % self.freq == 0 and ParallelEnv().local_rank == 0:
for k, v in logs.items():
self.writer.add_scalar("Train/{}".format(k), v, iter)
self.writer.flush()
def on_train_end(self, logs=None):
self.writer.close()
|