File size: 7,367 Bytes
1ab1a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddleseg.cvlibs import manager
from paddleseg.models import layers
from paddleseg.utils import utils


@manager.MODELS.add_component
class DANet(nn.Layer):
    """
    The DANet implementation based on PaddlePaddle.

    The original article refers to
    Fu, jun, et al. "Dual Attention Network for Scene Segmentation"
    (https://arxiv.org/pdf/1809.02983.pdf)

    Args:
        num_classes (int): The unique number of target classes.
        backbone (Paddle.nn.Layer): A backbone network.
        backbone_indices (tuple): The values in the tuple indicate the indices of
            output of backbone.
        align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
            is even, e.g. 1024x512, otherwise it is True, e.g. 769x769.  Default: False.
        pretrained (str, optional): The path or url of pretrained model. Default: None.
    """

    def __init__(self,
                 num_classes,
                 backbone,
                 backbone_indices,
                 align_corners=False,
                 pretrained=None):
        super().__init__()

        self.backbone = backbone
        self.backbone_indices = backbone_indices
        in_channels = [self.backbone.feat_channels[i] for i in backbone_indices]

        self.head = DAHead(num_classes=num_classes, in_channels=in_channels)

        self.align_corners = align_corners
        self.pretrained = pretrained
        self.init_weight()

    def forward(self, x):
        feats = self.backbone(x)
        feats = [feats[i] for i in self.backbone_indices]
        logit_list = self.head(feats)
        if not self.training:
            logit_list = [logit_list[0]]

        logit_list = [
            F.interpolate(
                logit,
                paddle.shape(x)[2:],
                mode='bilinear',
                align_corners=self.align_corners,
                align_mode=1) for logit in logit_list
        ]
        return logit_list

    def init_weight(self):
        if self.pretrained is not None:
            utils.load_entire_model(self, self.pretrained)


class DAHead(nn.Layer):
    """
    The Dual attention head.

    Args:
        num_classes (int): The unique number of target classes.
        in_channels (tuple): The number of input channels.
    """

    def __init__(self, num_classes, in_channels):
        super().__init__()
        in_channels = in_channels[-1]
        inter_channels = in_channels // 4

        self.channel_conv = layers.ConvBNReLU(in_channels, inter_channels, 3)
        self.position_conv = layers.ConvBNReLU(in_channels, inter_channels, 3)
        self.pam = PAM(inter_channels)
        self.cam = CAM(inter_channels)
        self.conv1 = layers.ConvBNReLU(inter_channels, inter_channels, 3)
        self.conv2 = layers.ConvBNReLU(inter_channels, inter_channels, 3)

        self.aux_head = nn.Sequential(
            nn.Dropout2D(0.1), nn.Conv2D(in_channels, num_classes, 1))

        self.aux_head_pam = nn.Sequential(
            nn.Dropout2D(0.1), nn.Conv2D(inter_channels, num_classes, 1))

        self.aux_head_cam = nn.Sequential(
            nn.Dropout2D(0.1), nn.Conv2D(inter_channels, num_classes, 1))

        self.cls_head = nn.Sequential(
            nn.Dropout2D(0.1), nn.Conv2D(inter_channels, num_classes, 1))

    def forward(self, feat_list):
        feats = feat_list[-1]
        channel_feats = self.channel_conv(feats)
        channel_feats = self.cam(channel_feats)
        channel_feats = self.conv1(channel_feats)

        position_feats = self.position_conv(feats)
        position_feats = self.pam(position_feats)
        position_feats = self.conv2(position_feats)

        feats_sum = position_feats + channel_feats
        logit = self.cls_head(feats_sum)

        if not self.training:
            return [logit]

        cam_logit = self.aux_head_cam(channel_feats)
        pam_logit = self.aux_head_cam(position_feats)
        aux_logit = self.aux_head(feats)
        return [logit, cam_logit, pam_logit, aux_logit]


class PAM(nn.Layer):
    """Position attention module."""

    def __init__(self, in_channels):
        super().__init__()
        mid_channels = in_channels // 8
        self.mid_channels = mid_channels
        self.in_channels = in_channels

        self.query_conv = nn.Conv2D(in_channels, mid_channels, 1, 1)
        self.key_conv = nn.Conv2D(in_channels, mid_channels, 1, 1)
        self.value_conv = nn.Conv2D(in_channels, in_channels, 1, 1)

        self.gamma = self.create_parameter(
            shape=[1],
            dtype='float32',
            default_initializer=nn.initializer.Constant(0))

    def forward(self, x):
        x_shape = paddle.shape(x)

        # query: n, h * w, c1
        query = self.query_conv(x)
        query = paddle.reshape(query, (0, self.mid_channels, -1))
        query = paddle.transpose(query, (0, 2, 1))

        # key: n, c1, h * w
        key = self.key_conv(x)
        key = paddle.reshape(key, (0, self.mid_channels, -1))

        # sim: n, h * w, h * w
        sim = paddle.bmm(query, key)
        sim = F.softmax(sim, axis=-1)

        value = self.value_conv(x)
        value = paddle.reshape(value, (0, self.in_channels, -1))
        sim = paddle.transpose(sim, (0, 2, 1))

        # feat: from (n, c2, h * w) -> (n, c2, h, w)
        feat = paddle.bmm(value, sim)
        feat = paddle.reshape(feat,
                              (0, self.in_channels, x_shape[2], x_shape[3]))

        out = self.gamma * feat + x
        return out


class CAM(nn.Layer):
    """Channel attention module."""

    def __init__(self, channels):
        super().__init__()

        self.channels = channels
        self.gamma = self.create_parameter(
            shape=[1],
            dtype='float32',
            default_initializer=nn.initializer.Constant(0))

    def forward(self, x):
        x_shape = paddle.shape(x)
        # query: n, c, h * w
        query = paddle.reshape(x, (0, self.channels, -1))
        # key: n, h * w, c
        key = paddle.reshape(x, (0, self.channels, -1))
        key = paddle.transpose(key, (0, 2, 1))

        # sim: n, c, c
        sim = paddle.bmm(query, key)
        # The danet author claims that this can avoid gradient divergence
        sim = paddle.max(sim, axis=-1, keepdim=True).tile(
            [1, 1, self.channels]) - sim
        sim = F.softmax(sim, axis=-1)

        # feat: from (n, c, h * w) to (n, c, h, w)
        value = paddle.reshape(x, (0, self.channels, -1))
        feat = paddle.bmm(sim, value)
        feat = paddle.reshape(feat, (0, self.channels, x_shape[2], x_shape[3]))

        out = self.gamma * feat + x
        return out