Spaces:
Configuration error
Configuration error
File size: 10,602 Bytes
1ab1a09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
from paddleseg.models import layers
from paddleseg.utils import utils
__all__ = ['DeepLabV3P', 'DeepLabV3']
@manager.MODELS.add_component
class DeepLabV3P(nn.Layer):
"""
The DeepLabV3Plus implementation based on PaddlePaddle.
The original article refers to
Liang-Chieh Chen, et, al. "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation"
(https://arxiv.org/abs/1802.02611)
Args:
num_classes (int): The unique number of target classes.
backbone (paddle.nn.Layer): Backbone network, currently support Resnet50_vd/Resnet101_vd/Xception65.
backbone_indices (tuple, optional): Two values in the tuple indicate the indices of output of backbone.
Default: (0, 3).
aspp_ratios (tuple, optional): The dilation rate using in ASSP module.
If output_stride=16, aspp_ratios should be set as (1, 6, 12, 18).
If output_stride=8, aspp_ratios is (1, 12, 24, 36).
Default: (1, 6, 12, 18).
aspp_out_channels (int, optional): The output channels of ASPP module. Default: 256.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
pretrained (str, optional): The path or url of pretrained model. Default: None.
data_format(str, optional): Data format that specifies the layout of input. It can be "NCHW" or "NHWC". Default: "NCHW".
"""
def __init__(self,
num_classes,
backbone,
backbone_indices=(0, 3),
aspp_ratios=(1, 6, 12, 18),
aspp_out_channels=256,
align_corners=False,
pretrained=None,
data_format="NCHW"):
super().__init__()
self.backbone = backbone
backbone_channels = [
backbone.feat_channels[i] for i in backbone_indices
]
self.head = DeepLabV3PHead(
num_classes,
backbone_indices,
backbone_channels,
aspp_ratios,
aspp_out_channels,
align_corners,
data_format=data_format)
self.align_corners = align_corners
self.pretrained = pretrained
self.data_format = data_format
self.init_weight()
def forward(self, x):
feat_list = self.backbone(x)
logit_list = self.head(feat_list)
if self.data_format == 'NCHW':
ori_shape = paddle.shape(x)[2:]
else:
ori_shape = paddle.shape(x)[1:3]
return [
F.interpolate(
logit,
ori_shape,
mode='bilinear',
align_corners=self.align_corners,
data_format=self.data_format) for logit in logit_list
]
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class DeepLabV3PHead(nn.Layer):
"""
The DeepLabV3PHead implementation based on PaddlePaddle.
Args:
num_classes (int): The unique number of target classes.
backbone_indices (tuple): Two values in the tuple indicate the indices of output of backbone.
the first index will be taken as a low-level feature in Decoder component;
the second one will be taken as input of ASPP component.
Usually backbone consists of four downsampling stage, and return an output of
each stage. If we set it as (0, 3), it means taking feature map of the first
stage in backbone as low-level feature used in Decoder, and feature map of the fourth
stage as input of ASPP.
backbone_channels (tuple): The same length with "backbone_indices". It indicates the channels of corresponding index.
aspp_ratios (tuple): The dilation rates using in ASSP module.
aspp_out_channels (int): The output channels of ASPP module.
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769.
data_format(str, optional): Data format that specifies the layout of input. It can be "NCHW" or "NHWC". Default: "NCHW".
"""
def __init__(self,
num_classes,
backbone_indices,
backbone_channels,
aspp_ratios,
aspp_out_channels,
align_corners,
data_format='NCHW'):
super().__init__()
self.aspp = layers.ASPPModule(
aspp_ratios,
backbone_channels[1],
aspp_out_channels,
align_corners,
use_sep_conv=True,
image_pooling=True,
data_format=data_format)
self.decoder = Decoder(
num_classes,
backbone_channels[0],
align_corners,
data_format=data_format)
self.backbone_indices = backbone_indices
def forward(self, feat_list):
logit_list = []
low_level_feat = feat_list[self.backbone_indices[0]]
x = feat_list[self.backbone_indices[1]]
x = self.aspp(x)
logit = self.decoder(x, low_level_feat)
logit_list.append(logit)
return logit_list
@manager.MODELS.add_component
class DeepLabV3(nn.Layer):
"""
The DeepLabV3 implementation based on PaddlePaddle.
The original article refers to
Liang-Chieh Chen, et, al. "Rethinking Atrous Convolution for Semantic Image Segmentation"
(https://arxiv.org/pdf/1706.05587.pdf).
Args:
Please Refer to DeepLabV3P above.
"""
def __init__(self,
num_classes,
backbone,
backbone_indices=(3, ),
aspp_ratios=(1, 6, 12, 18),
aspp_out_channels=256,
align_corners=False,
pretrained=None):
super().__init__()
self.backbone = backbone
backbone_channels = [
backbone.feat_channels[i] for i in backbone_indices
]
self.head = DeepLabV3Head(num_classes, backbone_indices,
backbone_channels, aspp_ratios,
aspp_out_channels, align_corners)
self.align_corners = align_corners
self.pretrained = pretrained
self.init_weight()
def forward(self, x):
feat_list = self.backbone(x)
logit_list = self.head(feat_list)
return [
F.interpolate(
logit,
paddle.shape(x)[2:],
mode='bilinear',
align_corners=self.align_corners) for logit in logit_list
]
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class DeepLabV3Head(nn.Layer):
"""
The DeepLabV3Head implementation based on PaddlePaddle.
Args:
Please Refer to DeepLabV3PHead above.
"""
def __init__(self, num_classes, backbone_indices, backbone_channels,
aspp_ratios, aspp_out_channels, align_corners):
super().__init__()
self.aspp = layers.ASPPModule(
aspp_ratios,
backbone_channels[0],
aspp_out_channels,
align_corners,
use_sep_conv=False,
image_pooling=True)
self.cls = nn.Conv2D(
in_channels=aspp_out_channels,
out_channels=num_classes,
kernel_size=1)
self.backbone_indices = backbone_indices
def forward(self, feat_list):
logit_list = []
x = feat_list[self.backbone_indices[0]]
x = self.aspp(x)
logit = self.cls(x)
logit_list.append(logit)
return logit_list
class Decoder(nn.Layer):
"""
Decoder module of DeepLabV3P model
Args:
num_classes (int): The number of classes.
in_channels (int): The number of input channels in decoder module.
"""
def __init__(self,
num_classes,
in_channels,
align_corners,
data_format='NCHW'):
super(Decoder, self).__init__()
self.data_format = data_format
self.conv_bn_relu1 = layers.ConvBNReLU(
in_channels=in_channels,
out_channels=48,
kernel_size=1,
data_format=data_format)
self.conv_bn_relu2 = layers.SeparableConvBNReLU(
in_channels=304,
out_channels=256,
kernel_size=3,
padding=1,
data_format=data_format)
self.conv_bn_relu3 = layers.SeparableConvBNReLU(
in_channels=256,
out_channels=256,
kernel_size=3,
padding=1,
data_format=data_format)
self.conv = nn.Conv2D(
in_channels=256,
out_channels=num_classes,
kernel_size=1,
data_format=data_format)
self.align_corners = align_corners
def forward(self, x, low_level_feat):
low_level_feat = self.conv_bn_relu1(low_level_feat)
if self.data_format == 'NCHW':
low_level_shape = paddle.shape(low_level_feat)[-2:]
axis = 1
else:
low_level_shape = paddle.shape(low_level_feat)[1:3]
axis = -1
x = F.interpolate(
x,
low_level_shape,
mode='bilinear',
align_corners=self.align_corners,
data_format=self.data_format)
x = paddle.concat([x, low_level_feat], axis=axis)
x = self.conv_bn_relu2(x)
x = self.conv_bn_relu3(x)
x = self.conv(x)
return x
|