File size: 9,002 Bytes
1ab1a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddleseg.models import layers
from paddleseg.cvlibs import manager
from paddleseg.utils import utils


@manager.MODELS.add_component
class DNLNet(nn.Layer):
    """Disentangled Non-Local Neural Networks.

    The original article refers to
    Minghao Yin, et al. "Disentangled Non-Local Neural Networks"
    (https://arxiv.org/abs/2006.06668)
    Args:
        num_classes (int): The unique number of target classes.
        backbone (Paddle.nn.Layer): A backbone network.
        backbone_indices (tuple): The values in the tuple indicate the indices of output of backbone.
        reduction (int): Reduction factor of projection transform. Default: 2.
        use_scale (bool): Whether to scale pairwise_weight by
            sqrt(1/inter_channels). Default: False.
        mode (str): The nonlocal mode. Options are 'embedded_gaussian',
            'dot_product'. Default: 'embedded_gaussian'.
        temperature (float): Temperature to adjust attention. Default: 0.05.
        concat_input (bool): Whether concat the input and output of convs before classification layer. Default: True
        enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True.
        align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
            is even, e.g. 1024x512, otherwise it is True, e.g. 769x769.  Default: False.
        pretrained (str, optional): The path or url of pretrained model. Default: None.
    """

    def __init__(self,
                 num_classes,
                 backbone,
                 backbone_indices=(2, 3),
                 reduction=2,
                 use_scale=True,
                 mode='embedded_gaussian',
                 temperature=0.05,
                 concat_input=True,
                 enable_auxiliary_loss=True,
                 align_corners=False,
                 pretrained=None):
        super().__init__()
        self.backbone = backbone
        self.backbone_indices = backbone_indices
        in_channels = [self.backbone.feat_channels[i] for i in backbone_indices]
        self.head = DNLHead(num_classes, in_channels, reduction, use_scale,
                            mode, temperature, concat_input,
                            enable_auxiliary_loss)
        self.align_corners = align_corners
        self.pretrained = pretrained
        self.init_weight()

    def forward(self, x):
        feats = self.backbone(x)
        feats = [feats[i] for i in self.backbone_indices]
        logit_list = self.head(feats)
        logit_list = [
            F.interpolate(
                logit,
                paddle.shape(x)[2:],
                mode='bilinear',
                align_corners=self.align_corners,
                align_mode=1) for logit in logit_list
        ]
        return logit_list

    def init_weight(self):
        if self.pretrained is not None:
            utils.load_entire_model(self, self.pretrained)


class DNLHead(nn.Layer):
    """
    The DNLNet head.

    Args:
        num_classes (int): The unique number of target classes.
        in_channels (tuple): The number of input channels.
        reduction (int): Reduction factor of projection transform. Default: 2.
        use_scale (bool): Whether to scale pairwise_weight by
            sqrt(1/inter_channels). Default: False.
        mode (str): The nonlocal mode. Options are 'embedded_gaussian',
            'dot_product'. Default: 'embedded_gaussian.'.
        temperature (float): Temperature to adjust attention. Default: 0.05
        concat_input (bool): Whether concat the input and output of convs before classification layer. Default: True
        enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True.
    """

    def __init__(self,
                 num_classes,
                 in_channels,
                 reduction,
                 use_scale,
                 mode,
                 temperature,
                 concat_input=True,
                 enable_auxiliary_loss=True,
                 **kwargs):
        super(DNLHead, self).__init__()
        self.in_channels = in_channels[-1]
        self.concat_input = concat_input
        self.enable_auxiliary_loss = enable_auxiliary_loss
        inter_channels = self.in_channels // 4

        self.dnl_block = DisentangledNonLocal2D(
            in_channels=inter_channels,
            reduction=reduction,
            use_scale=use_scale,
            temperature=temperature,
            mode=mode)
        self.conv0 = layers.ConvBNReLU(
            in_channels=self.in_channels,
            out_channels=inter_channels,
            kernel_size=3,
            bias_attr=False)
        self.conv1 = layers.ConvBNReLU(
            in_channels=inter_channels,
            out_channels=inter_channels,
            kernel_size=3,
            bias_attr=False)
        self.cls = nn.Sequential(
            nn.Dropout2D(p=0.1), nn.Conv2D(inter_channels, num_classes, 1))
        self.aux = nn.Sequential(
            layers.ConvBNReLU(
                in_channels=1024,
                out_channels=256,
                kernel_size=3,
                bias_attr=False),
            nn.Dropout2D(p=0.1),
            nn.Conv2D(256, num_classes, 1))
        if self.concat_input:
            self.conv_cat = layers.ConvBNReLU(
                self.in_channels + inter_channels,
                inter_channels,
                kernel_size=3,
                bias_attr=False)

    def forward(self, feat_list):
        C3, C4 = feat_list
        output = self.conv0(C4)
        output = self.dnl_block(output)
        output = self.conv1(output)
        if self.concat_input:
            output = self.conv_cat(paddle.concat([C4, output], axis=1))
        output = self.cls(output)
        if self.enable_auxiliary_loss:
            auxout = self.aux(C3)
            return [output, auxout]
        else:
            return [output]


class DisentangledNonLocal2D(layers.NonLocal2D):
    """Disentangled Non-Local Blocks.

    Args:
        temperature (float): Temperature to adjust attention.
    """

    def __init__(self, temperature, *arg, **kwargs):
        super().__init__(*arg, **kwargs)
        self.temperature = temperature
        self.conv_mask = nn.Conv2D(self.in_channels, 1, kernel_size=1)

    def embedded_gaussian(self, theta_x, phi_x):
        pairwise_weight = paddle.matmul(theta_x, phi_x)
        if self.use_scale:
            pairwise_weight /= theta_x.shape[-1]**0.5
        pairwise_weight /= self.temperature
        pairwise_weight = F.softmax(pairwise_weight, -1)
        return pairwise_weight

    def forward(self, x):
        x_shape = paddle.shape(x)
        g_x = self.g(x).reshape([0, self.inter_channels,
                                 -1]).transpose([0, 2, 1])

        if self.mode == "gaussian":
            theta_x = paddle.transpose(
                x.reshape([0, self.in_channels, -1]), [0, 2, 1])
            if self.sub_sample:
                phi_x = paddle.transpose(self.phi(x), [0, self.in_channels, -1])
            else:
                phi_x = paddle.transpose(x, [0, self.in_channels, -1])

        elif self.mode == "concatenation":
            theta_x = paddle.reshape(
                self.theta(x), [0, self.inter_channels, -1, 1])
            phi_x = paddle.reshape(self.phi(x), [0, self.inter_channels, 1, -1])

        else:
            theta_x = self.theta(x).reshape([0, self.inter_channels,
                                             -1]).transpose([0, 2, 1])
            phi_x = paddle.reshape(self.phi(x), [0, self.inter_channels, -1])

        theta_x -= paddle.mean(theta_x, axis=-2, keepdim=True)
        phi_x -= paddle.mean(phi_x, axis=-1, keepdim=True)

        pairwise_func = getattr(self, self.mode)
        pairwise_weight = pairwise_func(theta_x, phi_x)

        y = paddle.matmul(pairwise_weight, g_x).transpose([0, 2, 1]).reshape(
            [0, self.inter_channels, x_shape[2], x_shape[3]])
        unary_mask = F.softmax(
            paddle.reshape(self.conv_mask(x), [0, 1, -1]), -1)
        unary_x = paddle.matmul(unary_mask, g_x).transpose([0, 2, 1]).reshape(
            [0, self.inter_channels, 1, 1])
        output = x + self.conv_out(y + unary_x)
        return output