File size: 5,150 Bytes
1ab1a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.nn as nn
import paddle.nn.functional as F

import paddle
from paddleseg import utils
from paddleseg.cvlibs import manager, param_init
from paddleseg.models import layers


@manager.MODELS.add_component
class FCN(nn.Layer):
    """
    A simple implementation for FCN based on PaddlePaddle.

    The original article refers to
    Evan Shelhamer, et, al. "Fully Convolutional Networks for Semantic Segmentation"
    (https://arxiv.org/abs/1411.4038).

    Args:
        num_classes (int): The unique number of target classes.
        backbone (paddle.nn.Layer): Backbone networks.
        backbone_indices (tuple, optional): The values in the tuple indicate the indices of output of backbone.
            Default: (-1, ).
        channels (int, optional): The channels between conv layer and the last layer of FCNHead.
            If None, it will be the number of channels of input features. Default: None.
        align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
            is even, e.g. 1024x512, otherwise it is True, e.g. 769x769.  Default: False.
        pretrained (str, optional): The path or url of pretrained model. Default: None
    """

    def __init__(self,
                 num_classes,
                 backbone,
                 backbone_indices=(-1, ),
                 channels=None,
                 align_corners=False,
                 pretrained=None,
                 bias=True,
                 data_format="NCHW"):
        super(FCN, self).__init__()

        if data_format != 'NCHW':
            raise ('fcn only support NCHW data format')
        self.backbone = backbone
        backbone_channels = [
            backbone.feat_channels[i] for i in backbone_indices
        ]

        self.head = FCNHead(
            num_classes,
            backbone_indices,
            backbone_channels,
            channels,
            bias=bias)

        self.align_corners = align_corners
        self.pretrained = pretrained
        self.data_format = data_format
        self.init_weight()

    def forward(self, x):
        feat_list = self.backbone(x)
        logit_list = self.head(feat_list)
        return [
            F.interpolate(
                logit,
                paddle.shape(x)[2:],
                mode='bilinear',
                align_corners=self.align_corners) for logit in logit_list
        ]

    def init_weight(self):
        if self.pretrained is not None:
            utils.load_entire_model(self, self.pretrained)


class FCNHead(nn.Layer):
    """
    A simple implementation for FCNHead based on PaddlePaddle

    Args:
        num_classes (int): The unique number of target classes.
        backbone_indices (tuple, optional): The values in the tuple indicate the indices of output of backbone.
            Default: (-1, ).
        channels (int, optional): The channels between conv layer and the last layer of FCNHead.
            If None, it will be the number of channels of input features. Default: None.
        pretrained (str, optional): The path of pretrained model. Default: None
    """

    def __init__(self,
                 num_classes,
                 backbone_indices=(-1, ),
                 backbone_channels=(270, ),
                 channels=None,
                 bias=True):
        super(FCNHead, self).__init__()

        self.num_classes = num_classes
        self.backbone_indices = backbone_indices
        if channels is None:
            channels = backbone_channels[0]

        self.conv_1 = layers.ConvBNReLU(
            in_channels=backbone_channels[0],
            out_channels=channels,
            kernel_size=1,
            stride=1,
            bias_attr=bias)
        self.cls = nn.Conv2D(
            in_channels=channels,
            out_channels=self.num_classes,
            kernel_size=1,
            stride=1,
            bias_attr=bias)
        self.init_weight()

    def forward(self, feat_list):
        logit_list = []
        x = feat_list[self.backbone_indices[0]]
        x = self.conv_1(x)
        logit = self.cls(x)
        logit_list.append(logit)
        return logit_list

    def init_weight(self):
        for layer in self.sublayers():
            if isinstance(layer, nn.Conv2D):
                param_init.normal_init(layer.weight, std=0.001)
            elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
                param_init.constant_init(layer.weight, value=1.0)
                param_init.constant_init(layer.bias, value=0.0)