File size: 5,243 Bytes
1ab1a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import cv2
import numpy as np
from PIL import Image, ImageEnhance
from scipy.ndimage import distance_transform_edt


def normalize(im, mean, std):
    im = im.astype(np.float32, copy=False) / 255.0
    im -= mean
    im /= std
    return im


def resize(im, target_size=608, interp=cv2.INTER_LINEAR):
    if isinstance(target_size, list) or isinstance(target_size, tuple):
        w = target_size[0]
        h = target_size[1]
    else:
        w = target_size
        h = target_size
    im = cv2.resize(im, (w, h), interpolation=interp)
    return im


def resize_long(im, long_size=224, interpolation=cv2.INTER_LINEAR):
    value = max(im.shape[0], im.shape[1])
    scale = float(long_size) / float(value)
    resized_width = int(round(im.shape[1] * scale))
    resized_height = int(round(im.shape[0] * scale))

    im = cv2.resize(
        im, (resized_width, resized_height), interpolation=interpolation)
    return im


def resize_short(im, short_size=224, interpolation=cv2.INTER_LINEAR):
    value = min(im.shape[0], im.shape[1])
    scale = float(short_size) / float(value)
    resized_width = int(round(im.shape[1] * scale))
    resized_height = int(round(im.shape[0] * scale))

    im = cv2.resize(
        im, (resized_width, resized_height), interpolation=interpolation)
    return im


def horizontal_flip(im):
    if len(im.shape) == 3:
        im = im[:, ::-1, :]
    elif len(im.shape) == 2:
        im = im[:, ::-1]
    return im


def vertical_flip(im):
    if len(im.shape) == 3:
        im = im[::-1, :, :]
    elif len(im.shape) == 2:
        im = im[::-1, :]
    return im


def brightness(im, brightness_lower, brightness_upper):
    brightness_delta = np.random.uniform(brightness_lower, brightness_upper)
    im = ImageEnhance.Brightness(im).enhance(brightness_delta)
    return im


def contrast(im, contrast_lower, contrast_upper):
    contrast_delta = np.random.uniform(contrast_lower, contrast_upper)
    im = ImageEnhance.Contrast(im).enhance(contrast_delta)
    return im


def saturation(im, saturation_lower, saturation_upper):
    saturation_delta = np.random.uniform(saturation_lower, saturation_upper)
    im = ImageEnhance.Color(im).enhance(saturation_delta)
    return im


def hue(im, hue_lower, hue_upper):
    hue_delta = np.random.uniform(hue_lower, hue_upper)
    im = np.array(im.convert('HSV'))
    im[:, :, 0] = im[:, :, 0] + hue_delta
    im = Image.fromarray(im, mode='HSV').convert('RGB')
    return im


def sharpness(im, sharpness_lower, sharpness_upper):
    sharpness_delta = np.random.uniform(sharpness_lower, sharpness_upper)
    im = ImageEnhance.Sharpness(im).enhance(sharpness_delta)
    return im


def rotate(im, rotate_lower, rotate_upper):
    rotate_delta = np.random.uniform(rotate_lower, rotate_upper)
    im = im.rotate(int(rotate_delta))
    return im


def mask_to_onehot(mask, num_classes):
    """
    Convert a mask (H, W) to onehot (K, H, W).

    Args:
        mask (np.ndarray): Label mask with shape (H, W)
        num_classes (int): Number of classes.

    Returns:
        np.ndarray: Onehot mask with shape(K, H, W).
    """
    _mask = [mask == i for i in range(num_classes)]
    _mask = np.array(_mask).astype(np.uint8)
    return _mask


def onehot_to_binary_edge(mask, radius):
    """
    Convert a onehot mask (K, H, W) to a edge mask.

    Args:
        mask (np.ndarray): Onehot mask with shape (K, H, W)
        radius (int|float): Radius of edge.

    Returns:
        np.ndarray: Edge mask with shape(H, W).
    """
    if radius < 1:
        raise ValueError('`radius` should be greater than or equal to 1')
    num_classes = mask.shape[0]

    edge = np.zeros(mask.shape[1:])
    # pad borders
    mask = np.pad(mask, ((0, 0), (1, 1), (1, 1)),
                  mode='constant',
                  constant_values=0)
    for i in range(num_classes):
        dist = distance_transform_edt(mask[i, :]) + distance_transform_edt(
            1.0 - mask[i, :])
        dist = dist[1:-1, 1:-1]
        dist[dist > radius] = 0
        edge += dist

    edge = np.expand_dims(edge, axis=0)
    edge = (edge > 0).astype(np.uint8)
    return edge


def mask_to_binary_edge(mask, radius, num_classes):
    """
    Convert a segmentic segmentation mask (H, W) to a binary edge mask(H, W).

    Args:
        mask (np.ndarray): Label mask with shape (H, W)
        radius (int|float): Radius of edge.
        num_classes (int): Number of classes.

    Returns:
        np.ndarray: Edge mask with shape(H, W).
    """
    mask = mask.squeeze()
    onehot = mask_to_onehot(mask, num_classes)
    edge = onehot_to_binary_edge(onehot, radius)
    return edge