File size: 6,665 Bytes
1ab1a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import filelock
import os
import tempfile
import numpy as np
import random
from urllib.parse import urlparse, unquote

import paddle

from paddleseg.utils import logger, seg_env
from paddleseg.utils.download import download_file_and_uncompress


@contextlib.contextmanager
def generate_tempdir(directory: str=None, **kwargs):
    '''Generate a temporary directory'''
    directory = seg_env.TMP_HOME if not directory else directory
    with tempfile.TemporaryDirectory(dir=directory, **kwargs) as _dir:
        yield _dir


def load_entire_model(model, pretrained):
    if pretrained is not None:
        load_pretrained_model(model, pretrained)
    else:
        logger.warning('Not all pretrained params of {} are loaded, ' \
                       'training from scratch or a pretrained backbone.'.format(model.__class__.__name__))


def download_pretrained_model(pretrained_model):
    """
    Download pretrained model from url.
    Args:
        pretrained_model (str): the url of pretrained weight
    Returns:
        str: the path of pretrained weight
    """
    assert urlparse(pretrained_model).netloc, "The url is not valid."

    pretrained_model = unquote(pretrained_model)
    savename = pretrained_model.split('/')[-1]
    if not savename.endswith(('tgz', 'tar.gz', 'tar', 'zip')):
        savename = pretrained_model.split('/')[-2]
    else:
        savename = savename.split('.')[0]

    with generate_tempdir() as _dir:
        with filelock.FileLock(os.path.join(seg_env.TMP_HOME, savename)):
            pretrained_model = download_file_and_uncompress(
                pretrained_model,
                savepath=_dir,
                extrapath=seg_env.PRETRAINED_MODEL_HOME,
                extraname=savename)
            pretrained_model = os.path.join(pretrained_model, 'model.pdparams')
    return pretrained_model


def load_pretrained_model(model, pretrained_model):
    if pretrained_model is not None:
        logger.info('Loading pretrained model from {}'.format(pretrained_model))

        if urlparse(pretrained_model).netloc:
            pretrained_model = download_pretrained_model(pretrained_model)

        if os.path.exists(pretrained_model):
            para_state_dict = paddle.load(pretrained_model)

            model_state_dict = model.state_dict()
            keys = model_state_dict.keys()
            num_params_loaded = 0
            for k in keys:
                if k not in para_state_dict:
                    logger.warning("{} is not in pretrained model".format(k))
                elif list(para_state_dict[k].shape) != list(model_state_dict[k]
                                                            .shape):
                    logger.warning(
                        "[SKIP] Shape of pretrained params {} doesn't match.(Pretrained: {}, Actual: {})"
                        .format(k, para_state_dict[k].shape, model_state_dict[k]
                                .shape))
                else:
                    model_state_dict[k] = para_state_dict[k]
                    num_params_loaded += 1
            model.set_dict(model_state_dict)
            logger.info("There are {}/{} variables loaded into {}.".format(
                num_params_loaded,
                len(model_state_dict), model.__class__.__name__))

        else:
            raise ValueError('The pretrained model directory is not Found: {}'.
                             format(pretrained_model))
    else:
        logger.info(
            'No pretrained model to load, {} will be trained from scratch.'.
            format(model.__class__.__name__))


def resume(model, optimizer, resume_model):
    if resume_model is not None:
        logger.info('Resume model from {}'.format(resume_model))
        if os.path.exists(resume_model):
            resume_model = os.path.normpath(resume_model)
            ckpt_path = os.path.join(resume_model, 'model.pdparams')
            para_state_dict = paddle.load(ckpt_path)
            ckpt_path = os.path.join(resume_model, 'model.pdopt')
            opti_state_dict = paddle.load(ckpt_path)
            model.set_state_dict(para_state_dict)
            optimizer.set_state_dict(opti_state_dict)

            iter = resume_model.split('_')[-1]
            iter = int(iter)
            return iter
        else:
            raise ValueError(
                'Directory of the model needed to resume is not Found: {}'.
                format(resume_model))
    else:
        logger.info('No model needed to resume.')


def worker_init_fn(worker_id):
    np.random.seed(random.randint(0, 100000))


def get_image_list(image_path):
    """Get image list"""
    valid_suffix = [
        '.JPEG', '.jpeg', '.JPG', '.jpg', '.BMP', '.bmp', '.PNG', '.png'
    ]
    image_list = []
    image_dir = None
    if os.path.isfile(image_path):
        if os.path.splitext(image_path)[-1] in valid_suffix:
            image_list.append(image_path)
        else:
            image_dir = os.path.dirname(image_path)
            with open(image_path, 'r') as f:
                for line in f:
                    line = line.strip()
                    if len(line.split()) > 1:
                        line = line.split()[0]
                    image_list.append(os.path.join(image_dir, line))
    elif os.path.isdir(image_path):
        image_dir = image_path
        for root, dirs, files in os.walk(image_path):
            for f in files:
                if '.ipynb_checkpoints' in root:
                    continue
                if f.startswith('.'):
                    continue
                if os.path.splitext(f)[-1] in valid_suffix:
                    image_list.append(os.path.join(root, f))
    else:
        raise FileNotFoundError(
            '`--image_path` is not found. it should be a path of image, or a file list containing image paths, or a directory including images.'
        )

    if len(image_list) == 0:
        raise RuntimeError(
            'There are not image file in `--image_path`={}'.format(image_path))

    return image_list, image_dir