Spaces:
Configuration error
Configuration error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import numpy as np | |
import time | |
import paddle | |
import paddle.nn.functional as F | |
from paddleseg.utils import metrics, TimeAverager, calculate_eta, logger, progbar | |
from paddleseg.core import infer | |
np.set_printoptions(suppress=True) | |
def evaluate(model, | |
eval_dataset, | |
aug_eval=False, | |
scales=1.0, | |
flip_horizontal=False, | |
flip_vertical=False, | |
is_slide=False, | |
stride=None, | |
crop_size=None, | |
precision='fp32', | |
amp_level='O1', | |
num_workers=0, | |
print_detail=True, | |
auc_roc=False): | |
""" | |
Launch evalution. | |
Args: | |
model(nn.Layer): A semantic segmentation model. | |
eval_dataset (paddle.io.Dataset): Used to read and process validation datasets. | |
aug_eval (bool, optional): Whether to use mulit-scales and flip augment for evaluation. Default: False. | |
scales (list|float, optional): Scales for augment. It is valid when `aug_eval` is True. Default: 1.0. | |
flip_horizontal (bool, optional): Whether to use flip horizontally augment. It is valid when `aug_eval` is True. Default: True. | |
flip_vertical (bool, optional): Whether to use flip vertically augment. It is valid when `aug_eval` is True. Default: False. | |
is_slide (bool, optional): Whether to evaluate by sliding window. Default: False. | |
stride (tuple|list, optional): The stride of sliding window, the first is width and the second is height. | |
It should be provided when `is_slide` is True. | |
crop_size (tuple|list, optional): The crop size of sliding window, the first is width and the second is height. | |
It should be provided when `is_slide` is True. | |
precision (str, optional): Use AMP if precision='fp16'. If precision='fp32', the evaluation is normal. | |
amp_level (str, optional): Auto mixed precision level. Accepted values are “O1” and “O2”: O1 represent mixed precision, the input data type of each operator will be casted by white_list and black_list; O2 represent Pure fp16, all operators parameters and input data will be casted to fp16, except operators in black_list, don’t support fp16 kernel and batchnorm. Default is O1(amp) | |
num_workers (int, optional): Num workers for data loader. Default: 0. | |
print_detail (bool, optional): Whether to print detailed information about the evaluation process. Default: True. | |
auc_roc(bool, optional): whether add auc_roc metric | |
Returns: | |
float: The mIoU of validation datasets. | |
float: The accuracy of validation datasets. | |
""" | |
model.eval() | |
nranks = paddle.distributed.ParallelEnv().nranks | |
local_rank = paddle.distributed.ParallelEnv().local_rank | |
if nranks > 1: | |
# Initialize parallel environment if not done. | |
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized( | |
): | |
paddle.distributed.init_parallel_env() | |
batch_sampler = paddle.io.DistributedBatchSampler( | |
eval_dataset, batch_size=1, shuffle=False, drop_last=False) | |
loader = paddle.io.DataLoader( | |
eval_dataset, | |
batch_sampler=batch_sampler, | |
num_workers=num_workers, | |
return_list=True, ) | |
total_iters = len(loader) | |
intersect_area_all = paddle.zeros([1], dtype='int64') | |
pred_area_all = paddle.zeros([1], dtype='int64') | |
label_area_all = paddle.zeros([1], dtype='int64') | |
logits_all = None | |
label_all = None | |
if print_detail: | |
logger.info("Start evaluating (total_samples: {}, total_iters: {})...". | |
format(len(eval_dataset), total_iters)) | |
#TODO(chenguowei): fix log print error with multi-gpus | |
progbar_val = progbar.Progbar( | |
target=total_iters, verbose=1 if nranks < 2 else 2) | |
reader_cost_averager = TimeAverager() | |
batch_cost_averager = TimeAverager() | |
batch_start = time.time() | |
with paddle.no_grad(): | |
for iter, data in enumerate(loader): | |
reader_cost_averager.record(time.time() - batch_start) | |
label = data['label'].astype('int64') | |
if aug_eval: | |
if precision == 'fp16': | |
with paddle.amp.auto_cast( | |
level=amp_level, | |
enable=True, | |
custom_white_list={ | |
"elementwise_add", "batch_norm", | |
"sync_batch_norm" | |
}, | |
custom_black_list={'bilinear_interp_v2'}): | |
pred, logits = infer.aug_inference( | |
model, | |
data['img'], | |
trans_info=data['trans_info'], | |
scales=scales, | |
flip_horizontal=flip_horizontal, | |
flip_vertical=flip_vertical, | |
is_slide=is_slide, | |
stride=stride, | |
crop_size=crop_size) | |
else: | |
pred, logits = infer.aug_inference( | |
model, | |
data['img'], | |
trans_info=data['trans_info'], | |
scales=scales, | |
flip_horizontal=flip_horizontal, | |
flip_vertical=flip_vertical, | |
is_slide=is_slide, | |
stride=stride, | |
crop_size=crop_size) | |
else: | |
if precision == 'fp16': | |
with paddle.amp.auto_cast( | |
level=amp_level, | |
enable=True, | |
custom_white_list={ | |
"elementwise_add", "batch_norm", | |
"sync_batch_norm" | |
}, | |
custom_black_list={'bilinear_interp_v2'}): | |
pred, logits = infer.inference( | |
model, | |
data['img'], | |
trans_info=data['trans_info'], | |
is_slide=is_slide, | |
stride=stride, | |
crop_size=crop_size) | |
else: | |
pred, logits = infer.inference( | |
model, | |
data['img'], | |
trans_info=data['trans_info'], | |
is_slide=is_slide, | |
stride=stride, | |
crop_size=crop_size) | |
intersect_area, pred_area, label_area = metrics.calculate_area( | |
pred, | |
label, | |
eval_dataset.num_classes, | |
ignore_index=eval_dataset.ignore_index) | |
# Gather from all ranks | |
if nranks > 1: | |
intersect_area_list = [] | |
pred_area_list = [] | |
label_area_list = [] | |
paddle.distributed.all_gather(intersect_area_list, | |
intersect_area) | |
paddle.distributed.all_gather(pred_area_list, pred_area) | |
paddle.distributed.all_gather(label_area_list, label_area) | |
# Some image has been evaluated and should be eliminated in last iter | |
if (iter + 1) * nranks > len(eval_dataset): | |
valid = len(eval_dataset) - iter * nranks | |
intersect_area_list = intersect_area_list[:valid] | |
pred_area_list = pred_area_list[:valid] | |
label_area_list = label_area_list[:valid] | |
for i in range(len(intersect_area_list)): | |
intersect_area_all = intersect_area_all + intersect_area_list[ | |
i] | |
pred_area_all = pred_area_all + pred_area_list[i] | |
label_area_all = label_area_all + label_area_list[i] | |
else: | |
intersect_area_all = intersect_area_all + intersect_area | |
pred_area_all = pred_area_all + pred_area | |
label_area_all = label_area_all + label_area | |
if auc_roc: | |
logits = F.softmax(logits, axis=1) | |
if logits_all is None: | |
logits_all = logits.numpy() | |
label_all = label.numpy() | |
else: | |
logits_all = np.concatenate( | |
[logits_all, logits.numpy()]) # (KN, C, H, W) | |
label_all = np.concatenate([label_all, label.numpy()]) | |
batch_cost_averager.record( | |
time.time() - batch_start, num_samples=len(label)) | |
batch_cost = batch_cost_averager.get_average() | |
reader_cost = reader_cost_averager.get_average() | |
if local_rank == 0 and print_detail: | |
progbar_val.update(iter + 1, [('batch_cost', batch_cost), | |
('reader cost', reader_cost)]) | |
reader_cost_averager.reset() | |
batch_cost_averager.reset() | |
batch_start = time.time() | |
metrics_input = (intersect_area_all, pred_area_all, label_area_all) | |
class_iou, miou = metrics.mean_iou(*metrics_input) | |
acc, class_precision, class_recall = metrics.class_measurement( | |
*metrics_input) | |
kappa = metrics.kappa(*metrics_input) | |
class_dice, mdice = metrics.dice(*metrics_input) | |
if auc_roc: | |
auc_roc = metrics.auc_roc( | |
logits_all, label_all, num_classes=eval_dataset.num_classes) | |
auc_infor = ' Auc_roc: {:.4f}'.format(auc_roc) | |
if print_detail: | |
infor = "[EVAL] #Images: {} mIoU: {:.4f} Acc: {:.4f} Kappa: {:.4f} Dice: {:.4f}".format( | |
len(eval_dataset), miou, acc, kappa, mdice) | |
infor = infor + auc_infor if auc_roc else infor | |
logger.info(infor) | |
logger.info("[EVAL] Class IoU: \n" + str(np.round(class_iou, 4))) | |
logger.info("[EVAL] Class Precision: \n" + str( | |
np.round(class_precision, 4))) | |
logger.info("[EVAL] Class Recall: \n" + str(np.round(class_recall, 4))) | |
return miou, acc, class_iou, class_precision, kappa | |