sidharthism's picture
Added model *.pdparams
1ab1a09
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager, param_init
from paddleseg.models import layers
from paddleseg.utils import utils
__all__ = [
"HRNet_W18_Small_V1", "HRNet_W18_Small_V2", "HRNet_W18", "HRNet_W30",
"HRNet_W32", "HRNet_W40", "HRNet_W44", "HRNet_W48", "HRNet_W60", "HRNet_W64"
]
class HRNet(nn.Layer):
"""
The HRNet implementation based on PaddlePaddle.
The original article refers to
Jingdong Wang, et, al. "HRNet:Deep High-Resolution Representation Learning for Visual Recognition"
(https://arxiv.org/pdf/1908.07919.pdf).
Args:
pretrained (str, optional): The path of pretrained model.
stage1_num_modules (int, optional): Number of modules for stage1. Default 1.
stage1_num_blocks (list, optional): Number of blocks per module for stage1. Default (4).
stage1_num_channels (list, optional): Number of channels per branch for stage1. Default (64).
stage2_num_modules (int, optional): Number of modules for stage2. Default 1.
stage2_num_blocks (list, optional): Number of blocks per module for stage2. Default (4, 4).
stage2_num_channels (list, optional): Number of channels per branch for stage2. Default (18, 36).
stage3_num_modules (int, optional): Number of modules for stage3. Default 4.
stage3_num_blocks (list, optional): Number of blocks per module for stage3. Default (4, 4, 4).
stage3_num_channels (list, optional): Number of channels per branch for stage3. Default [18, 36, 72).
stage4_num_modules (int, optional): Number of modules for stage4. Default 3.
stage4_num_blocks (list, optional): Number of blocks per module for stage4. Default (4, 4, 4, 4).
stage4_num_channels (list, optional): Number of channels per branch for stage4. Default (18, 36, 72. 144).
has_se (bool, optional): Whether to use Squeeze-and-Excitation module. Default False.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
"""
def __init__(self,
pretrained=None,
stage1_num_modules=1,
stage1_num_blocks=(4, ),
stage1_num_channels=(64, ),
stage2_num_modules=1,
stage2_num_blocks=(4, 4),
stage2_num_channels=(18, 36),
stage3_num_modules=4,
stage3_num_blocks=(4, 4, 4),
stage3_num_channels=(18, 36, 72),
stage4_num_modules=3,
stage4_num_blocks=(4, 4, 4, 4),
stage4_num_channels=(18, 36, 72, 144),
has_se=False,
align_corners=False,
padding_same=True):
super(HRNet, self).__init__()
self.pretrained = pretrained
self.stage1_num_modules = stage1_num_modules
self.stage1_num_blocks = stage1_num_blocks
self.stage1_num_channels = stage1_num_channels
self.stage2_num_modules = stage2_num_modules
self.stage2_num_blocks = stage2_num_blocks
self.stage2_num_channels = stage2_num_channels
self.stage3_num_modules = stage3_num_modules
self.stage3_num_blocks = stage3_num_blocks
self.stage3_num_channels = stage3_num_channels
self.stage4_num_modules = stage4_num_modules
self.stage4_num_blocks = stage4_num_blocks
self.stage4_num_channels = stage4_num_channels
self.has_se = has_se
self.align_corners = align_corners
self.feat_channels = [sum(stage4_num_channels)]
self.conv_layer1_1 = layers.ConvBNReLU(
in_channels=3,
out_channels=64,
kernel_size=3,
stride=2,
padding=1 if not padding_same else 'same',
bias_attr=False)
self.conv_layer1_2 = layers.ConvBNReLU(
in_channels=64,
out_channels=64,
kernel_size=3,
stride=2,
padding=1 if not padding_same else 'same',
bias_attr=False)
self.la1 = Layer1(
num_channels=64,
num_blocks=self.stage1_num_blocks[0],
num_filters=self.stage1_num_channels[0],
has_se=has_se,
name="layer2",
padding_same=padding_same)
self.tr1 = TransitionLayer(
in_channels=[self.stage1_num_channels[0] * 4],
out_channels=self.stage2_num_channels,
name="tr1",
padding_same=padding_same)
self.st2 = Stage(
num_channels=self.stage2_num_channels,
num_modules=self.stage2_num_modules,
num_blocks=self.stage2_num_blocks,
num_filters=self.stage2_num_channels,
has_se=self.has_se,
name="st2",
align_corners=align_corners,
padding_same=padding_same)
self.tr2 = TransitionLayer(
in_channels=self.stage2_num_channels,
out_channels=self.stage3_num_channels,
name="tr2",
padding_same=padding_same)
self.st3 = Stage(
num_channels=self.stage3_num_channels,
num_modules=self.stage3_num_modules,
num_blocks=self.stage3_num_blocks,
num_filters=self.stage3_num_channels,
has_se=self.has_se,
name="st3",
align_corners=align_corners,
padding_same=padding_same)
self.tr3 = TransitionLayer(
in_channels=self.stage3_num_channels,
out_channels=self.stage4_num_channels,
name="tr3",
padding_same=padding_same)
self.st4 = Stage(
num_channels=self.stage4_num_channels,
num_modules=self.stage4_num_modules,
num_blocks=self.stage4_num_blocks,
num_filters=self.stage4_num_channels,
has_se=self.has_se,
name="st4",
align_corners=align_corners,
padding_same=padding_same)
self.init_weight()
def forward(self, x):
conv1 = self.conv_layer1_1(x)
conv2 = self.conv_layer1_2(conv1)
la1 = self.la1(conv2)
tr1 = self.tr1([la1])
st2 = self.st2(tr1)
tr2 = self.tr2(st2)
st3 = self.st3(tr2)
tr3 = self.tr3(st3)
st4 = self.st4(tr3)
size = paddle.shape(st4[0])[2:]
x1 = F.interpolate(
st4[1], size, mode='bilinear', align_corners=self.align_corners)
x2 = F.interpolate(
st4[2], size, mode='bilinear', align_corners=self.align_corners)
x3 = F.interpolate(
st4[3], size, mode='bilinear', align_corners=self.align_corners)
x = paddle.concat([st4[0], x1, x2, x3], axis=1)
return [x]
def init_weight(self):
for layer in self.sublayers():
if isinstance(layer, nn.Conv2D):
param_init.normal_init(layer.weight, std=0.001)
elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
param_init.constant_init(layer.weight, value=1.0)
param_init.constant_init(layer.bias, value=0.0)
if self.pretrained is not None:
utils.load_pretrained_model(self, self.pretrained)
class Layer1(nn.Layer):
def __init__(self,
num_channels,
num_filters,
num_blocks,
has_se=False,
name=None,
padding_same=True):
super(Layer1, self).__init__()
self.bottleneck_block_list = []
for i in range(num_blocks):
bottleneck_block = self.add_sublayer(
"bb_{}_{}".format(name, i + 1),
BottleneckBlock(
num_channels=num_channels if i == 0 else num_filters * 4,
num_filters=num_filters,
has_se=has_se,
stride=1,
downsample=True if i == 0 else False,
name=name + '_' + str(i + 1),
padding_same=padding_same))
self.bottleneck_block_list.append(bottleneck_block)
def forward(self, x):
conv = x
for block_func in self.bottleneck_block_list:
conv = block_func(conv)
return conv
class TransitionLayer(nn.Layer):
def __init__(self, in_channels, out_channels, name=None, padding_same=True):
super(TransitionLayer, self).__init__()
num_in = len(in_channels)
num_out = len(out_channels)
self.conv_bn_func_list = []
for i in range(num_out):
residual = None
if i < num_in:
if in_channels[i] != out_channels[i]:
residual = self.add_sublayer(
"transition_{}_layer_{}".format(name, i + 1),
layers.ConvBNReLU(
in_channels=in_channels[i],
out_channels=out_channels[i],
kernel_size=3,
padding=1 if not padding_same else 'same',
bias_attr=False))
else:
residual = self.add_sublayer(
"transition_{}_layer_{}".format(name, i + 1),
layers.ConvBNReLU(
in_channels=in_channels[-1],
out_channels=out_channels[i],
kernel_size=3,
stride=2,
padding=1 if not padding_same else 'same',
bias_attr=False))
self.conv_bn_func_list.append(residual)
def forward(self, x):
outs = []
for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
if conv_bn_func is None:
outs.append(x[idx])
else:
if idx < len(x):
outs.append(conv_bn_func(x[idx]))
else:
outs.append(conv_bn_func(x[-1]))
return outs
class Branches(nn.Layer):
def __init__(self,
num_blocks,
in_channels,
out_channels,
has_se=False,
name=None,
padding_same=True):
super(Branches, self).__init__()
self.basic_block_list = []
for i in range(len(out_channels)):
self.basic_block_list.append([])
for j in range(num_blocks[i]):
in_ch = in_channels[i] if j == 0 else out_channels[i]
basic_block_func = self.add_sublayer(
"bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
BasicBlock(
num_channels=in_ch,
num_filters=out_channels[i],
has_se=has_se,
name=name + '_branch_layer_' + str(i + 1) + '_' +
str(j + 1),
padding_same=padding_same))
self.basic_block_list[i].append(basic_block_func)
def forward(self, x):
outs = []
for idx, input in enumerate(x):
conv = input
for basic_block_func in self.basic_block_list[idx]:
conv = basic_block_func(conv)
outs.append(conv)
return outs
class BottleneckBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
has_se,
stride=1,
downsample=False,
name=None,
padding_same=True):
super(BottleneckBlock, self).__init__()
self.has_se = has_se
self.downsample = downsample
self.conv1 = layers.ConvBNReLU(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=1,
bias_attr=False)
self.conv2 = layers.ConvBNReLU(
in_channels=num_filters,
out_channels=num_filters,
kernel_size=3,
stride=stride,
padding=1 if not padding_same else 'same',
bias_attr=False)
self.conv3 = layers.ConvBN(
in_channels=num_filters,
out_channels=num_filters * 4,
kernel_size=1,
bias_attr=False)
if self.downsample:
self.conv_down = layers.ConvBN(
in_channels=num_channels,
out_channels=num_filters * 4,
kernel_size=1,
bias_attr=False)
if self.has_se:
self.se = SELayer(
num_channels=num_filters * 4,
num_filters=num_filters * 4,
reduction_ratio=16,
name=name + '_fc')
self.add = layers.Add()
self.relu = layers.Activation("relu")
def forward(self, x):
residual = x
conv1 = self.conv1(x)
conv2 = self.conv2(conv1)
conv3 = self.conv3(conv2)
if self.downsample:
residual = self.conv_down(x)
if self.has_se:
conv3 = self.se(conv3)
y = self.add(conv3, residual)
y = self.relu(y)
return y
class BasicBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
stride=1,
has_se=False,
downsample=False,
name=None,
padding_same=True):
super(BasicBlock, self).__init__()
self.has_se = has_se
self.downsample = downsample
self.conv1 = layers.ConvBNReLU(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=3,
stride=stride,
padding=1 if not padding_same else 'same',
bias_attr=False)
self.conv2 = layers.ConvBN(
in_channels=num_filters,
out_channels=num_filters,
kernel_size=3,
padding=1 if not padding_same else 'same',
bias_attr=False)
if self.downsample:
self.conv_down = layers.ConvBNReLU(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=1,
bias_attr=False)
if self.has_se:
self.se = SELayer(
num_channels=num_filters,
num_filters=num_filters,
reduction_ratio=16,
name=name + '_fc')
self.add = layers.Add()
self.relu = layers.Activation("relu")
def forward(self, x):
residual = x
conv1 = self.conv1(x)
conv2 = self.conv2(conv1)
if self.downsample:
residual = self.conv_down(x)
if self.has_se:
conv2 = self.se(conv2)
y = self.add(conv2, residual)
y = self.relu(y)
return y
class SELayer(nn.Layer):
def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
super(SELayer, self).__init__()
self.pool2d_gap = nn.AdaptiveAvgPool2D(1)
self._num_channels = num_channels
med_ch = int(num_channels / reduction_ratio)
stdv = 1.0 / math.sqrt(num_channels * 1.0)
self.squeeze = nn.Linear(
num_channels,
med_ch,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Uniform(-stdv, stdv)))
stdv = 1.0 / math.sqrt(med_ch * 1.0)
self.excitation = nn.Linear(
med_ch,
num_filters,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Uniform(-stdv, stdv)))
def forward(self, x):
pool = self.pool2d_gap(x)
pool = paddle.reshape(pool, shape=[-1, self._num_channels])
squeeze = self.squeeze(pool)
squeeze = F.relu(squeeze)
excitation = self.excitation(squeeze)
excitation = F.sigmoid(excitation)
excitation = paddle.reshape(
excitation, shape=[-1, self._num_channels, 1, 1])
out = x * excitation
return out
class Stage(nn.Layer):
def __init__(self,
num_channels,
num_modules,
num_blocks,
num_filters,
has_se=False,
multi_scale_output=True,
name=None,
align_corners=False,
padding_same=True):
super(Stage, self).__init__()
self._num_modules = num_modules
self.stage_func_list = []
for i in range(num_modules):
if i == num_modules - 1 and not multi_scale_output:
stage_func = self.add_sublayer(
"stage_{}_{}".format(name, i + 1),
HighResolutionModule(
num_channels=num_channels,
num_blocks=num_blocks,
num_filters=num_filters,
has_se=has_se,
multi_scale_output=False,
name=name + '_' + str(i + 1),
align_corners=align_corners,
padding_same=padding_same))
else:
stage_func = self.add_sublayer(
"stage_{}_{}".format(name, i + 1),
HighResolutionModule(
num_channels=num_channels,
num_blocks=num_blocks,
num_filters=num_filters,
has_se=has_se,
name=name + '_' + str(i + 1),
align_corners=align_corners,
padding_same=padding_same))
self.stage_func_list.append(stage_func)
def forward(self, x):
out = x
for idx in range(self._num_modules):
out = self.stage_func_list[idx](out)
return out
class HighResolutionModule(nn.Layer):
def __init__(self,
num_channels,
num_blocks,
num_filters,
has_se=False,
multi_scale_output=True,
name=None,
align_corners=False,
padding_same=True):
super(HighResolutionModule, self).__init__()
self.branches_func = Branches(
num_blocks=num_blocks,
in_channels=num_channels,
out_channels=num_filters,
has_se=has_se,
name=name,
padding_same=padding_same)
self.fuse_func = FuseLayers(
in_channels=num_filters,
out_channels=num_filters,
multi_scale_output=multi_scale_output,
name=name,
align_corners=align_corners,
padding_same=padding_same)
def forward(self, x):
out = self.branches_func(x)
out = self.fuse_func(out)
return out
class FuseLayers(nn.Layer):
def __init__(self,
in_channels,
out_channels,
multi_scale_output=True,
name=None,
align_corners=False,
padding_same=True):
super(FuseLayers, self).__init__()
self._actual_ch = len(in_channels) if multi_scale_output else 1
self._in_channels = in_channels
self.align_corners = align_corners
self.residual_func_list = []
for i in range(self._actual_ch):
for j in range(len(in_channels)):
if j > i:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
layers.ConvBN(
in_channels=in_channels[j],
out_channels=out_channels[i],
kernel_size=1,
bias_attr=False))
self.residual_func_list.append(residual_func)
elif j < i:
pre_num_filters = in_channels[j]
for k in range(i - j):
if k == i - j - 1:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}_{}".format(
name, i + 1, j + 1, k + 1),
layers.ConvBN(
in_channels=pre_num_filters,
out_channels=out_channels[i],
kernel_size=3,
stride=2,
padding=1 if not padding_same else 'same',
bias_attr=False))
pre_num_filters = out_channels[i]
else:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}_{}".format(
name, i + 1, j + 1, k + 1),
layers.ConvBNReLU(
in_channels=pre_num_filters,
out_channels=out_channels[j],
kernel_size=3,
stride=2,
padding=1 if not padding_same else 'same',
bias_attr=False))
pre_num_filters = out_channels[j]
self.residual_func_list.append(residual_func)
def forward(self, x):
outs = []
residual_func_idx = 0
for i in range(self._actual_ch):
residual = x[i]
residual_shape = paddle.shape(residual)[-2:]
for j in range(len(self._in_channels)):
if j > i:
y = self.residual_func_list[residual_func_idx](x[j])
residual_func_idx += 1
y = F.interpolate(
y,
residual_shape,
mode='bilinear',
align_corners=self.align_corners)
residual = residual + y
elif j < i:
y = x[j]
for k in range(i - j):
y = self.residual_func_list[residual_func_idx](y)
residual_func_idx += 1
residual = residual + y
residual = F.relu(residual)
outs.append(residual)
return outs
@manager.BACKBONES.add_component
def HRNet_W18_Small_V1(**kwargs):
model = HRNet(
stage1_num_modules=1,
stage1_num_blocks=[1],
stage1_num_channels=[32],
stage2_num_modules=1,
stage2_num_blocks=[2, 2],
stage2_num_channels=[16, 32],
stage3_num_modules=1,
stage3_num_blocks=[2, 2, 2],
stage3_num_channels=[16, 32, 64],
stage4_num_modules=1,
stage4_num_blocks=[2, 2, 2, 2],
stage4_num_channels=[16, 32, 64, 128],
**kwargs)
return model
@manager.BACKBONES.add_component
def HRNet_W18_Small_V2(**kwargs):
model = HRNet(
stage1_num_modules=1,
stage1_num_blocks=[2],
stage1_num_channels=[64],
stage2_num_modules=1,
stage2_num_blocks=[2, 2],
stage2_num_channels=[18, 36],
stage3_num_modules=3,
stage3_num_blocks=[2, 2, 2],
stage3_num_channels=[18, 36, 72],
stage4_num_modules=2,
stage4_num_blocks=[2, 2, 2, 2],
stage4_num_channels=[18, 36, 72, 144],
**kwargs)
return model
@manager.BACKBONES.add_component
def HRNet_W18(**kwargs):
model = HRNet(
stage1_num_modules=1,
stage1_num_blocks=[4],
stage1_num_channels=[64],
stage2_num_modules=1,
stage2_num_blocks=[4, 4],
stage2_num_channels=[18, 36],
stage3_num_modules=4,
stage3_num_blocks=[4, 4, 4],
stage3_num_channels=[18, 36, 72],
stage4_num_modules=3,
stage4_num_blocks=[4, 4, 4, 4],
stage4_num_channels=[18, 36, 72, 144],
**kwargs)
return model
@manager.BACKBONES.add_component
def HRNet_W30(**kwargs):
model = HRNet(
stage1_num_modules=1,
stage1_num_blocks=[4],
stage1_num_channels=[64],
stage2_num_modules=1,
stage2_num_blocks=[4, 4],
stage2_num_channels=[30, 60],
stage3_num_modules=4,
stage3_num_blocks=[4, 4, 4],
stage3_num_channels=[30, 60, 120],
stage4_num_modules=3,
stage4_num_blocks=[4, 4, 4, 4],
stage4_num_channels=[30, 60, 120, 240],
**kwargs)
return model
@manager.BACKBONES.add_component
def HRNet_W32(**kwargs):
model = HRNet(
stage1_num_modules=1,
stage1_num_blocks=[4],
stage1_num_channels=[64],
stage2_num_modules=1,
stage2_num_blocks=[4, 4],
stage2_num_channels=[32, 64],
stage3_num_modules=4,
stage3_num_blocks=[4, 4, 4],
stage3_num_channels=[32, 64, 128],
stage4_num_modules=3,
stage4_num_blocks=[4, 4, 4, 4],
stage4_num_channels=[32, 64, 128, 256],
**kwargs)
return model
@manager.BACKBONES.add_component
def HRNet_W40(**kwargs):
model = HRNet(
stage1_num_modules=1,
stage1_num_blocks=[4],
stage1_num_channels=[64],
stage2_num_modules=1,
stage2_num_blocks=[4, 4],
stage2_num_channels=[40, 80],
stage3_num_modules=4,
stage3_num_blocks=[4, 4, 4],
stage3_num_channels=[40, 80, 160],
stage4_num_modules=3,
stage4_num_blocks=[4, 4, 4, 4],
stage4_num_channels=[40, 80, 160, 320],
**kwargs)
return model
@manager.BACKBONES.add_component
def HRNet_W44(**kwargs):
model = HRNet(
stage1_num_modules=1,
stage1_num_blocks=[4],
stage1_num_channels=[64],
stage2_num_modules=1,
stage2_num_blocks=[4, 4],
stage2_num_channels=[44, 88],
stage3_num_modules=4,
stage3_num_blocks=[4, 4, 4],
stage3_num_channels=[44, 88, 176],
stage4_num_modules=3,
stage4_num_blocks=[4, 4, 4, 4],
stage4_num_channels=[44, 88, 176, 352],
**kwargs)
return model
@manager.BACKBONES.add_component
def HRNet_W48(**kwargs):
model = HRNet(
stage1_num_modules=1,
stage1_num_blocks=[4],
stage1_num_channels=[64],
stage2_num_modules=1,
stage2_num_blocks=[4, 4],
stage2_num_channels=[48, 96],
stage3_num_modules=4,
stage3_num_blocks=[4, 4, 4],
stage3_num_channels=[48, 96, 192],
stage4_num_modules=3,
stage4_num_blocks=[4, 4, 4, 4],
stage4_num_channels=[48, 96, 192, 384],
**kwargs)
return model
@manager.BACKBONES.add_component
def HRNet_W60(**kwargs):
model = HRNet(
stage1_num_modules=1,
stage1_num_blocks=[4],
stage1_num_channels=[64],
stage2_num_modules=1,
stage2_num_blocks=[4, 4],
stage2_num_channels=[60, 120],
stage3_num_modules=4,
stage3_num_blocks=[4, 4, 4],
stage3_num_channels=[60, 120, 240],
stage4_num_modules=3,
stage4_num_blocks=[4, 4, 4, 4],
stage4_num_channels=[60, 120, 240, 480],
**kwargs)
return model
@manager.BACKBONES.add_component
def HRNet_W64(**kwargs):
model = HRNet(
stage1_num_modules=1,
stage1_num_blocks=[4],
stage1_num_channels=[64],
stage2_num_modules=1,
stage2_num_blocks=[4, 4],
stage2_num_channels=[64, 128],
stage3_num_modules=4,
stage3_num_blocks=[4, 4, 4],
stage3_num_channels=[64, 128, 256],
stage4_num_modules=3,
stage4_num_blocks=[4, 4, 4, 4],
stage4_num_channels=[64, 128, 256, 512],
**kwargs)
return model