Spaces:
Configuration error
Configuration error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
from paddleseg.cvlibs import manager, param_init | |
from paddleseg.models import layers | |
from paddleseg.utils import utils | |
__all__ = [ | |
"HRNet_W18_Small_V1", "HRNet_W18_Small_V2", "HRNet_W18", "HRNet_W30", | |
"HRNet_W32", "HRNet_W40", "HRNet_W44", "HRNet_W48", "HRNet_W60", "HRNet_W64" | |
] | |
class HRNet(nn.Layer): | |
""" | |
The HRNet implementation based on PaddlePaddle. | |
The original article refers to | |
Jingdong Wang, et, al. "HRNet:Deep High-Resolution Representation Learning for Visual Recognition" | |
(https://arxiv.org/pdf/1908.07919.pdf). | |
Args: | |
pretrained (str, optional): The path of pretrained model. | |
stage1_num_modules (int, optional): Number of modules for stage1. Default 1. | |
stage1_num_blocks (list, optional): Number of blocks per module for stage1. Default (4). | |
stage1_num_channels (list, optional): Number of channels per branch for stage1. Default (64). | |
stage2_num_modules (int, optional): Number of modules for stage2. Default 1. | |
stage2_num_blocks (list, optional): Number of blocks per module for stage2. Default (4, 4). | |
stage2_num_channels (list, optional): Number of channels per branch for stage2. Default (18, 36). | |
stage3_num_modules (int, optional): Number of modules for stage3. Default 4. | |
stage3_num_blocks (list, optional): Number of blocks per module for stage3. Default (4, 4, 4). | |
stage3_num_channels (list, optional): Number of channels per branch for stage3. Default [18, 36, 72). | |
stage4_num_modules (int, optional): Number of modules for stage4. Default 3. | |
stage4_num_blocks (list, optional): Number of blocks per module for stage4. Default (4, 4, 4, 4). | |
stage4_num_channels (list, optional): Number of channels per branch for stage4. Default (18, 36, 72. 144). | |
has_se (bool, optional): Whether to use Squeeze-and-Excitation module. Default False. | |
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even, | |
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False. | |
""" | |
def __init__(self, | |
pretrained=None, | |
stage1_num_modules=1, | |
stage1_num_blocks=(4, ), | |
stage1_num_channels=(64, ), | |
stage2_num_modules=1, | |
stage2_num_blocks=(4, 4), | |
stage2_num_channels=(18, 36), | |
stage3_num_modules=4, | |
stage3_num_blocks=(4, 4, 4), | |
stage3_num_channels=(18, 36, 72), | |
stage4_num_modules=3, | |
stage4_num_blocks=(4, 4, 4, 4), | |
stage4_num_channels=(18, 36, 72, 144), | |
has_se=False, | |
align_corners=False, | |
padding_same=True): | |
super(HRNet, self).__init__() | |
self.pretrained = pretrained | |
self.stage1_num_modules = stage1_num_modules | |
self.stage1_num_blocks = stage1_num_blocks | |
self.stage1_num_channels = stage1_num_channels | |
self.stage2_num_modules = stage2_num_modules | |
self.stage2_num_blocks = stage2_num_blocks | |
self.stage2_num_channels = stage2_num_channels | |
self.stage3_num_modules = stage3_num_modules | |
self.stage3_num_blocks = stage3_num_blocks | |
self.stage3_num_channels = stage3_num_channels | |
self.stage4_num_modules = stage4_num_modules | |
self.stage4_num_blocks = stage4_num_blocks | |
self.stage4_num_channels = stage4_num_channels | |
self.has_se = has_se | |
self.align_corners = align_corners | |
self.feat_channels = [sum(stage4_num_channels)] | |
self.conv_layer1_1 = layers.ConvBNReLU( | |
in_channels=3, | |
out_channels=64, | |
kernel_size=3, | |
stride=2, | |
padding=1 if not padding_same else 'same', | |
bias_attr=False) | |
self.conv_layer1_2 = layers.ConvBNReLU( | |
in_channels=64, | |
out_channels=64, | |
kernel_size=3, | |
stride=2, | |
padding=1 if not padding_same else 'same', | |
bias_attr=False) | |
self.la1 = Layer1( | |
num_channels=64, | |
num_blocks=self.stage1_num_blocks[0], | |
num_filters=self.stage1_num_channels[0], | |
has_se=has_se, | |
name="layer2", | |
padding_same=padding_same) | |
self.tr1 = TransitionLayer( | |
in_channels=[self.stage1_num_channels[0] * 4], | |
out_channels=self.stage2_num_channels, | |
name="tr1", | |
padding_same=padding_same) | |
self.st2 = Stage( | |
num_channels=self.stage2_num_channels, | |
num_modules=self.stage2_num_modules, | |
num_blocks=self.stage2_num_blocks, | |
num_filters=self.stage2_num_channels, | |
has_se=self.has_se, | |
name="st2", | |
align_corners=align_corners, | |
padding_same=padding_same) | |
self.tr2 = TransitionLayer( | |
in_channels=self.stage2_num_channels, | |
out_channels=self.stage3_num_channels, | |
name="tr2", | |
padding_same=padding_same) | |
self.st3 = Stage( | |
num_channels=self.stage3_num_channels, | |
num_modules=self.stage3_num_modules, | |
num_blocks=self.stage3_num_blocks, | |
num_filters=self.stage3_num_channels, | |
has_se=self.has_se, | |
name="st3", | |
align_corners=align_corners, | |
padding_same=padding_same) | |
self.tr3 = TransitionLayer( | |
in_channels=self.stage3_num_channels, | |
out_channels=self.stage4_num_channels, | |
name="tr3", | |
padding_same=padding_same) | |
self.st4 = Stage( | |
num_channels=self.stage4_num_channels, | |
num_modules=self.stage4_num_modules, | |
num_blocks=self.stage4_num_blocks, | |
num_filters=self.stage4_num_channels, | |
has_se=self.has_se, | |
name="st4", | |
align_corners=align_corners, | |
padding_same=padding_same) | |
self.init_weight() | |
def forward(self, x): | |
conv1 = self.conv_layer1_1(x) | |
conv2 = self.conv_layer1_2(conv1) | |
la1 = self.la1(conv2) | |
tr1 = self.tr1([la1]) | |
st2 = self.st2(tr1) | |
tr2 = self.tr2(st2) | |
st3 = self.st3(tr2) | |
tr3 = self.tr3(st3) | |
st4 = self.st4(tr3) | |
size = paddle.shape(st4[0])[2:] | |
x1 = F.interpolate( | |
st4[1], size, mode='bilinear', align_corners=self.align_corners) | |
x2 = F.interpolate( | |
st4[2], size, mode='bilinear', align_corners=self.align_corners) | |
x3 = F.interpolate( | |
st4[3], size, mode='bilinear', align_corners=self.align_corners) | |
x = paddle.concat([st4[0], x1, x2, x3], axis=1) | |
return [x] | |
def init_weight(self): | |
for layer in self.sublayers(): | |
if isinstance(layer, nn.Conv2D): | |
param_init.normal_init(layer.weight, std=0.001) | |
elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)): | |
param_init.constant_init(layer.weight, value=1.0) | |
param_init.constant_init(layer.bias, value=0.0) | |
if self.pretrained is not None: | |
utils.load_pretrained_model(self, self.pretrained) | |
class Layer1(nn.Layer): | |
def __init__(self, | |
num_channels, | |
num_filters, | |
num_blocks, | |
has_se=False, | |
name=None, | |
padding_same=True): | |
super(Layer1, self).__init__() | |
self.bottleneck_block_list = [] | |
for i in range(num_blocks): | |
bottleneck_block = self.add_sublayer( | |
"bb_{}_{}".format(name, i + 1), | |
BottleneckBlock( | |
num_channels=num_channels if i == 0 else num_filters * 4, | |
num_filters=num_filters, | |
has_se=has_se, | |
stride=1, | |
downsample=True if i == 0 else False, | |
name=name + '_' + str(i + 1), | |
padding_same=padding_same)) | |
self.bottleneck_block_list.append(bottleneck_block) | |
def forward(self, x): | |
conv = x | |
for block_func in self.bottleneck_block_list: | |
conv = block_func(conv) | |
return conv | |
class TransitionLayer(nn.Layer): | |
def __init__(self, in_channels, out_channels, name=None, padding_same=True): | |
super(TransitionLayer, self).__init__() | |
num_in = len(in_channels) | |
num_out = len(out_channels) | |
self.conv_bn_func_list = [] | |
for i in range(num_out): | |
residual = None | |
if i < num_in: | |
if in_channels[i] != out_channels[i]: | |
residual = self.add_sublayer( | |
"transition_{}_layer_{}".format(name, i + 1), | |
layers.ConvBNReLU( | |
in_channels=in_channels[i], | |
out_channels=out_channels[i], | |
kernel_size=3, | |
padding=1 if not padding_same else 'same', | |
bias_attr=False)) | |
else: | |
residual = self.add_sublayer( | |
"transition_{}_layer_{}".format(name, i + 1), | |
layers.ConvBNReLU( | |
in_channels=in_channels[-1], | |
out_channels=out_channels[i], | |
kernel_size=3, | |
stride=2, | |
padding=1 if not padding_same else 'same', | |
bias_attr=False)) | |
self.conv_bn_func_list.append(residual) | |
def forward(self, x): | |
outs = [] | |
for idx, conv_bn_func in enumerate(self.conv_bn_func_list): | |
if conv_bn_func is None: | |
outs.append(x[idx]) | |
else: | |
if idx < len(x): | |
outs.append(conv_bn_func(x[idx])) | |
else: | |
outs.append(conv_bn_func(x[-1])) | |
return outs | |
class Branches(nn.Layer): | |
def __init__(self, | |
num_blocks, | |
in_channels, | |
out_channels, | |
has_se=False, | |
name=None, | |
padding_same=True): | |
super(Branches, self).__init__() | |
self.basic_block_list = [] | |
for i in range(len(out_channels)): | |
self.basic_block_list.append([]) | |
for j in range(num_blocks[i]): | |
in_ch = in_channels[i] if j == 0 else out_channels[i] | |
basic_block_func = self.add_sublayer( | |
"bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1), | |
BasicBlock( | |
num_channels=in_ch, | |
num_filters=out_channels[i], | |
has_se=has_se, | |
name=name + '_branch_layer_' + str(i + 1) + '_' + | |
str(j + 1), | |
padding_same=padding_same)) | |
self.basic_block_list[i].append(basic_block_func) | |
def forward(self, x): | |
outs = [] | |
for idx, input in enumerate(x): | |
conv = input | |
for basic_block_func in self.basic_block_list[idx]: | |
conv = basic_block_func(conv) | |
outs.append(conv) | |
return outs | |
class BottleneckBlock(nn.Layer): | |
def __init__(self, | |
num_channels, | |
num_filters, | |
has_se, | |
stride=1, | |
downsample=False, | |
name=None, | |
padding_same=True): | |
super(BottleneckBlock, self).__init__() | |
self.has_se = has_se | |
self.downsample = downsample | |
self.conv1 = layers.ConvBNReLU( | |
in_channels=num_channels, | |
out_channels=num_filters, | |
kernel_size=1, | |
bias_attr=False) | |
self.conv2 = layers.ConvBNReLU( | |
in_channels=num_filters, | |
out_channels=num_filters, | |
kernel_size=3, | |
stride=stride, | |
padding=1 if not padding_same else 'same', | |
bias_attr=False) | |
self.conv3 = layers.ConvBN( | |
in_channels=num_filters, | |
out_channels=num_filters * 4, | |
kernel_size=1, | |
bias_attr=False) | |
if self.downsample: | |
self.conv_down = layers.ConvBN( | |
in_channels=num_channels, | |
out_channels=num_filters * 4, | |
kernel_size=1, | |
bias_attr=False) | |
if self.has_se: | |
self.se = SELayer( | |
num_channels=num_filters * 4, | |
num_filters=num_filters * 4, | |
reduction_ratio=16, | |
name=name + '_fc') | |
self.add = layers.Add() | |
self.relu = layers.Activation("relu") | |
def forward(self, x): | |
residual = x | |
conv1 = self.conv1(x) | |
conv2 = self.conv2(conv1) | |
conv3 = self.conv3(conv2) | |
if self.downsample: | |
residual = self.conv_down(x) | |
if self.has_se: | |
conv3 = self.se(conv3) | |
y = self.add(conv3, residual) | |
y = self.relu(y) | |
return y | |
class BasicBlock(nn.Layer): | |
def __init__(self, | |
num_channels, | |
num_filters, | |
stride=1, | |
has_se=False, | |
downsample=False, | |
name=None, | |
padding_same=True): | |
super(BasicBlock, self).__init__() | |
self.has_se = has_se | |
self.downsample = downsample | |
self.conv1 = layers.ConvBNReLU( | |
in_channels=num_channels, | |
out_channels=num_filters, | |
kernel_size=3, | |
stride=stride, | |
padding=1 if not padding_same else 'same', | |
bias_attr=False) | |
self.conv2 = layers.ConvBN( | |
in_channels=num_filters, | |
out_channels=num_filters, | |
kernel_size=3, | |
padding=1 if not padding_same else 'same', | |
bias_attr=False) | |
if self.downsample: | |
self.conv_down = layers.ConvBNReLU( | |
in_channels=num_channels, | |
out_channels=num_filters, | |
kernel_size=1, | |
bias_attr=False) | |
if self.has_se: | |
self.se = SELayer( | |
num_channels=num_filters, | |
num_filters=num_filters, | |
reduction_ratio=16, | |
name=name + '_fc') | |
self.add = layers.Add() | |
self.relu = layers.Activation("relu") | |
def forward(self, x): | |
residual = x | |
conv1 = self.conv1(x) | |
conv2 = self.conv2(conv1) | |
if self.downsample: | |
residual = self.conv_down(x) | |
if self.has_se: | |
conv2 = self.se(conv2) | |
y = self.add(conv2, residual) | |
y = self.relu(y) | |
return y | |
class SELayer(nn.Layer): | |
def __init__(self, num_channels, num_filters, reduction_ratio, name=None): | |
super(SELayer, self).__init__() | |
self.pool2d_gap = nn.AdaptiveAvgPool2D(1) | |
self._num_channels = num_channels | |
med_ch = int(num_channels / reduction_ratio) | |
stdv = 1.0 / math.sqrt(num_channels * 1.0) | |
self.squeeze = nn.Linear( | |
num_channels, | |
med_ch, | |
weight_attr=paddle.ParamAttr( | |
initializer=nn.initializer.Uniform(-stdv, stdv))) | |
stdv = 1.0 / math.sqrt(med_ch * 1.0) | |
self.excitation = nn.Linear( | |
med_ch, | |
num_filters, | |
weight_attr=paddle.ParamAttr( | |
initializer=nn.initializer.Uniform(-stdv, stdv))) | |
def forward(self, x): | |
pool = self.pool2d_gap(x) | |
pool = paddle.reshape(pool, shape=[-1, self._num_channels]) | |
squeeze = self.squeeze(pool) | |
squeeze = F.relu(squeeze) | |
excitation = self.excitation(squeeze) | |
excitation = F.sigmoid(excitation) | |
excitation = paddle.reshape( | |
excitation, shape=[-1, self._num_channels, 1, 1]) | |
out = x * excitation | |
return out | |
class Stage(nn.Layer): | |
def __init__(self, | |
num_channels, | |
num_modules, | |
num_blocks, | |
num_filters, | |
has_se=False, | |
multi_scale_output=True, | |
name=None, | |
align_corners=False, | |
padding_same=True): | |
super(Stage, self).__init__() | |
self._num_modules = num_modules | |
self.stage_func_list = [] | |
for i in range(num_modules): | |
if i == num_modules - 1 and not multi_scale_output: | |
stage_func = self.add_sublayer( | |
"stage_{}_{}".format(name, i + 1), | |
HighResolutionModule( | |
num_channels=num_channels, | |
num_blocks=num_blocks, | |
num_filters=num_filters, | |
has_se=has_se, | |
multi_scale_output=False, | |
name=name + '_' + str(i + 1), | |
align_corners=align_corners, | |
padding_same=padding_same)) | |
else: | |
stage_func = self.add_sublayer( | |
"stage_{}_{}".format(name, i + 1), | |
HighResolutionModule( | |
num_channels=num_channels, | |
num_blocks=num_blocks, | |
num_filters=num_filters, | |
has_se=has_se, | |
name=name + '_' + str(i + 1), | |
align_corners=align_corners, | |
padding_same=padding_same)) | |
self.stage_func_list.append(stage_func) | |
def forward(self, x): | |
out = x | |
for idx in range(self._num_modules): | |
out = self.stage_func_list[idx](out) | |
return out | |
class HighResolutionModule(nn.Layer): | |
def __init__(self, | |
num_channels, | |
num_blocks, | |
num_filters, | |
has_se=False, | |
multi_scale_output=True, | |
name=None, | |
align_corners=False, | |
padding_same=True): | |
super(HighResolutionModule, self).__init__() | |
self.branches_func = Branches( | |
num_blocks=num_blocks, | |
in_channels=num_channels, | |
out_channels=num_filters, | |
has_se=has_se, | |
name=name, | |
padding_same=padding_same) | |
self.fuse_func = FuseLayers( | |
in_channels=num_filters, | |
out_channels=num_filters, | |
multi_scale_output=multi_scale_output, | |
name=name, | |
align_corners=align_corners, | |
padding_same=padding_same) | |
def forward(self, x): | |
out = self.branches_func(x) | |
out = self.fuse_func(out) | |
return out | |
class FuseLayers(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
multi_scale_output=True, | |
name=None, | |
align_corners=False, | |
padding_same=True): | |
super(FuseLayers, self).__init__() | |
self._actual_ch = len(in_channels) if multi_scale_output else 1 | |
self._in_channels = in_channels | |
self.align_corners = align_corners | |
self.residual_func_list = [] | |
for i in range(self._actual_ch): | |
for j in range(len(in_channels)): | |
if j > i: | |
residual_func = self.add_sublayer( | |
"residual_{}_layer_{}_{}".format(name, i + 1, j + 1), | |
layers.ConvBN( | |
in_channels=in_channels[j], | |
out_channels=out_channels[i], | |
kernel_size=1, | |
bias_attr=False)) | |
self.residual_func_list.append(residual_func) | |
elif j < i: | |
pre_num_filters = in_channels[j] | |
for k in range(i - j): | |
if k == i - j - 1: | |
residual_func = self.add_sublayer( | |
"residual_{}_layer_{}_{}_{}".format( | |
name, i + 1, j + 1, k + 1), | |
layers.ConvBN( | |
in_channels=pre_num_filters, | |
out_channels=out_channels[i], | |
kernel_size=3, | |
stride=2, | |
padding=1 if not padding_same else 'same', | |
bias_attr=False)) | |
pre_num_filters = out_channels[i] | |
else: | |
residual_func = self.add_sublayer( | |
"residual_{}_layer_{}_{}_{}".format( | |
name, i + 1, j + 1, k + 1), | |
layers.ConvBNReLU( | |
in_channels=pre_num_filters, | |
out_channels=out_channels[j], | |
kernel_size=3, | |
stride=2, | |
padding=1 if not padding_same else 'same', | |
bias_attr=False)) | |
pre_num_filters = out_channels[j] | |
self.residual_func_list.append(residual_func) | |
def forward(self, x): | |
outs = [] | |
residual_func_idx = 0 | |
for i in range(self._actual_ch): | |
residual = x[i] | |
residual_shape = paddle.shape(residual)[-2:] | |
for j in range(len(self._in_channels)): | |
if j > i: | |
y = self.residual_func_list[residual_func_idx](x[j]) | |
residual_func_idx += 1 | |
y = F.interpolate( | |
y, | |
residual_shape, | |
mode='bilinear', | |
align_corners=self.align_corners) | |
residual = residual + y | |
elif j < i: | |
y = x[j] | |
for k in range(i - j): | |
y = self.residual_func_list[residual_func_idx](y) | |
residual_func_idx += 1 | |
residual = residual + y | |
residual = F.relu(residual) | |
outs.append(residual) | |
return outs | |
def HRNet_W18_Small_V1(**kwargs): | |
model = HRNet( | |
stage1_num_modules=1, | |
stage1_num_blocks=[1], | |
stage1_num_channels=[32], | |
stage2_num_modules=1, | |
stage2_num_blocks=[2, 2], | |
stage2_num_channels=[16, 32], | |
stage3_num_modules=1, | |
stage3_num_blocks=[2, 2, 2], | |
stage3_num_channels=[16, 32, 64], | |
stage4_num_modules=1, | |
stage4_num_blocks=[2, 2, 2, 2], | |
stage4_num_channels=[16, 32, 64, 128], | |
**kwargs) | |
return model | |
def HRNet_W18_Small_V2(**kwargs): | |
model = HRNet( | |
stage1_num_modules=1, | |
stage1_num_blocks=[2], | |
stage1_num_channels=[64], | |
stage2_num_modules=1, | |
stage2_num_blocks=[2, 2], | |
stage2_num_channels=[18, 36], | |
stage3_num_modules=3, | |
stage3_num_blocks=[2, 2, 2], | |
stage3_num_channels=[18, 36, 72], | |
stage4_num_modules=2, | |
stage4_num_blocks=[2, 2, 2, 2], | |
stage4_num_channels=[18, 36, 72, 144], | |
**kwargs) | |
return model | |
def HRNet_W18(**kwargs): | |
model = HRNet( | |
stage1_num_modules=1, | |
stage1_num_blocks=[4], | |
stage1_num_channels=[64], | |
stage2_num_modules=1, | |
stage2_num_blocks=[4, 4], | |
stage2_num_channels=[18, 36], | |
stage3_num_modules=4, | |
stage3_num_blocks=[4, 4, 4], | |
stage3_num_channels=[18, 36, 72], | |
stage4_num_modules=3, | |
stage4_num_blocks=[4, 4, 4, 4], | |
stage4_num_channels=[18, 36, 72, 144], | |
**kwargs) | |
return model | |
def HRNet_W30(**kwargs): | |
model = HRNet( | |
stage1_num_modules=1, | |
stage1_num_blocks=[4], | |
stage1_num_channels=[64], | |
stage2_num_modules=1, | |
stage2_num_blocks=[4, 4], | |
stage2_num_channels=[30, 60], | |
stage3_num_modules=4, | |
stage3_num_blocks=[4, 4, 4], | |
stage3_num_channels=[30, 60, 120], | |
stage4_num_modules=3, | |
stage4_num_blocks=[4, 4, 4, 4], | |
stage4_num_channels=[30, 60, 120, 240], | |
**kwargs) | |
return model | |
def HRNet_W32(**kwargs): | |
model = HRNet( | |
stage1_num_modules=1, | |
stage1_num_blocks=[4], | |
stage1_num_channels=[64], | |
stage2_num_modules=1, | |
stage2_num_blocks=[4, 4], | |
stage2_num_channels=[32, 64], | |
stage3_num_modules=4, | |
stage3_num_blocks=[4, 4, 4], | |
stage3_num_channels=[32, 64, 128], | |
stage4_num_modules=3, | |
stage4_num_blocks=[4, 4, 4, 4], | |
stage4_num_channels=[32, 64, 128, 256], | |
**kwargs) | |
return model | |
def HRNet_W40(**kwargs): | |
model = HRNet( | |
stage1_num_modules=1, | |
stage1_num_blocks=[4], | |
stage1_num_channels=[64], | |
stage2_num_modules=1, | |
stage2_num_blocks=[4, 4], | |
stage2_num_channels=[40, 80], | |
stage3_num_modules=4, | |
stage3_num_blocks=[4, 4, 4], | |
stage3_num_channels=[40, 80, 160], | |
stage4_num_modules=3, | |
stage4_num_blocks=[4, 4, 4, 4], | |
stage4_num_channels=[40, 80, 160, 320], | |
**kwargs) | |
return model | |
def HRNet_W44(**kwargs): | |
model = HRNet( | |
stage1_num_modules=1, | |
stage1_num_blocks=[4], | |
stage1_num_channels=[64], | |
stage2_num_modules=1, | |
stage2_num_blocks=[4, 4], | |
stage2_num_channels=[44, 88], | |
stage3_num_modules=4, | |
stage3_num_blocks=[4, 4, 4], | |
stage3_num_channels=[44, 88, 176], | |
stage4_num_modules=3, | |
stage4_num_blocks=[4, 4, 4, 4], | |
stage4_num_channels=[44, 88, 176, 352], | |
**kwargs) | |
return model | |
def HRNet_W48(**kwargs): | |
model = HRNet( | |
stage1_num_modules=1, | |
stage1_num_blocks=[4], | |
stage1_num_channels=[64], | |
stage2_num_modules=1, | |
stage2_num_blocks=[4, 4], | |
stage2_num_channels=[48, 96], | |
stage3_num_modules=4, | |
stage3_num_blocks=[4, 4, 4], | |
stage3_num_channels=[48, 96, 192], | |
stage4_num_modules=3, | |
stage4_num_blocks=[4, 4, 4, 4], | |
stage4_num_channels=[48, 96, 192, 384], | |
**kwargs) | |
return model | |
def HRNet_W60(**kwargs): | |
model = HRNet( | |
stage1_num_modules=1, | |
stage1_num_blocks=[4], | |
stage1_num_channels=[64], | |
stage2_num_modules=1, | |
stage2_num_blocks=[4, 4], | |
stage2_num_channels=[60, 120], | |
stage3_num_modules=4, | |
stage3_num_blocks=[4, 4, 4], | |
stage3_num_channels=[60, 120, 240], | |
stage4_num_modules=3, | |
stage4_num_blocks=[4, 4, 4, 4], | |
stage4_num_channels=[60, 120, 240, 480], | |
**kwargs) | |
return model | |
def HRNet_W64(**kwargs): | |
model = HRNet( | |
stage1_num_modules=1, | |
stage1_num_blocks=[4], | |
stage1_num_channels=[64], | |
stage2_num_modules=1, | |
stage2_num_blocks=[4, 4], | |
stage2_num_channels=[64, 128], | |
stage3_num_modules=4, | |
stage3_num_blocks=[4, 4, 4], | |
stage3_num_channels=[64, 128, 256], | |
stage4_num_modules=3, | |
stage4_num_blocks=[4, 4, 4, 4], | |
stage4_num_channels=[64, 128, 256, 512], | |
**kwargs) | |
return model | |