sidharthism's picture
Added model *.pdparams
1ab1a09
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on
https://github.com/HRNet/Lite-HRNet/blob/hrnet/models/backbones/litehrnet.py
"""
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from numbers import Integral
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Normal, Constant
from paddleseg.cvlibs import manager
from paddleseg import utils
__all__ = [
"Lite_HRNet_18", "Lite_HRNet_30", "Lite_HRNet_naive",
"Lite_HRNet_wider_naive", "LiteHRNet"
]
def Conv2d(in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
weight_init=Normal(std=0.001),
bias_init=Constant(0.)):
weight_attr = paddle.framework.ParamAttr(initializer=weight_init)
if bias:
bias_attr = paddle.framework.ParamAttr(initializer=bias_init)
else:
bias_attr = False
conv = nn.Conv2D(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
weight_attr=weight_attr,
bias_attr=bias_attr)
return conv
def channel_shuffle(x, groups):
x_shape = paddle.shape(x)
batch_size, height, width = x_shape[0], x_shape[2], x_shape[3]
num_channels = x.shape[1]
channels_per_group = num_channels // groups
x = paddle.reshape(
x=x, shape=[batch_size, groups, channels_per_group, height, width])
x = paddle.transpose(x=x, perm=[0, 2, 1, 3, 4])
x = paddle.reshape(x=x, shape=[batch_size, num_channels, height, width])
return x
class ConvNormLayer(nn.Layer):
def __init__(self,
ch_in,
ch_out,
filter_size,
stride=1,
groups=1,
norm_type=None,
norm_groups=32,
norm_decay=0.,
freeze_norm=False,
act=None):
super(ConvNormLayer, self).__init__()
self.act = act
norm_lr = 0. if freeze_norm else 1.
if norm_type is not None:
assert norm_type in ['bn', 'sync_bn', 'gn'], \
"norm_type should be one of ['bn', 'sync_bn', 'gn'], but got {}".format(norm_type)
param_attr = ParamAttr(
initializer=Constant(1.0),
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay), )
bias_attr = ParamAttr(
learning_rate=norm_lr, regularizer=L2Decay(norm_decay))
global_stats = True if freeze_norm else None
if norm_type in ['bn', 'sync_bn']:
self.norm = nn.BatchNorm2D(
ch_out,
weight_attr=param_attr,
bias_attr=bias_attr,
use_global_stats=global_stats, )
elif norm_type == 'gn':
self.norm = nn.GroupNorm(
num_groups=norm_groups,
num_channels=ch_out,
weight_attr=param_attr,
bias_attr=bias_attr)
norm_params = self.norm.parameters()
if freeze_norm:
for param in norm_params:
param.stop_gradient = True
conv_bias_attr = False
else:
conv_bias_attr = True
self.norm = None
self.conv = nn.Conv2D(
in_channels=ch_in,
out_channels=ch_out,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(initializer=Normal(
mean=0., std=0.001)),
bias_attr=conv_bias_attr)
def forward(self, inputs):
out = self.conv(inputs)
if self.norm is not None:
out = self.norm(out)
if self.act == 'relu':
out = F.relu(out)
elif self.act == 'sigmoid':
out = F.sigmoid(out)
return out
class DepthWiseSeparableConvNormLayer(nn.Layer):
def __init__(self,
ch_in,
ch_out,
filter_size,
stride=1,
dw_norm_type=None,
pw_norm_type=None,
norm_decay=0.,
freeze_norm=False,
dw_act=None,
pw_act=None):
super(DepthWiseSeparableConvNormLayer, self).__init__()
self.depthwise_conv = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_in,
filter_size=filter_size,
stride=stride,
groups=ch_in,
norm_type=dw_norm_type,
act=dw_act,
norm_decay=norm_decay,
freeze_norm=freeze_norm, )
self.pointwise_conv = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=1,
stride=1,
norm_type=pw_norm_type,
act=pw_act,
norm_decay=norm_decay,
freeze_norm=freeze_norm, )
def forward(self, x):
x = self.depthwise_conv(x)
x = self.pointwise_conv(x)
return x
class CrossResolutionWeightingModule(nn.Layer):
def __init__(self,
channels,
ratio=16,
norm_type='bn',
freeze_norm=False,
norm_decay=0.):
super(CrossResolutionWeightingModule, self).__init__()
self.channels = channels
total_channel = sum(channels)
self.conv1 = ConvNormLayer(
ch_in=total_channel,
ch_out=total_channel // ratio,
filter_size=1,
stride=1,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay)
self.conv2 = ConvNormLayer(
ch_in=total_channel // ratio,
ch_out=total_channel,
filter_size=1,
stride=1,
norm_type=norm_type,
act='sigmoid',
freeze_norm=freeze_norm,
norm_decay=norm_decay)
def forward(self, x):
out = []
for idx, xi in enumerate(x[:-1]):
kernel_size = stride = pow(2, len(x) - idx - 1)
xi = F.avg_pool2d(xi, kernel_size=kernel_size, stride=stride)
out.append(xi)
out.append(x[-1])
out = paddle.concat(out, 1)
out = self.conv1(out)
out = self.conv2(out)
out = paddle.split(out, self.channels, 1)
out = [
s * F.interpolate(
a, paddle.shape(s)[-2:], mode='nearest') for s, a in zip(x, out)
]
return out
class SpatialWeightingModule(nn.Layer):
def __init__(self, in_channel, ratio=16, freeze_norm=False, norm_decay=0.):
super(SpatialWeightingModule, self).__init__()
self.global_avgpooling = nn.AdaptiveAvgPool2D(1)
self.conv1 = ConvNormLayer(
ch_in=in_channel,
ch_out=in_channel // ratio,
filter_size=1,
stride=1,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay)
self.conv2 = ConvNormLayer(
ch_in=in_channel // ratio,
ch_out=in_channel,
filter_size=1,
stride=1,
act='sigmoid',
freeze_norm=freeze_norm,
norm_decay=norm_decay)
def forward(self, x):
out = self.global_avgpooling(x)
out = self.conv1(out)
out = self.conv2(out)
return x * out
class ConditionalChannelWeightingBlock(nn.Layer):
def __init__(self,
in_channels,
stride,
reduce_ratio,
norm_type='bn',
freeze_norm=False,
norm_decay=0.):
super(ConditionalChannelWeightingBlock, self).__init__()
assert stride in [1, 2]
branch_channels = [channel // 2 for channel in in_channels]
self.cross_resolution_weighting = CrossResolutionWeightingModule(
branch_channels,
ratio=reduce_ratio,
norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay)
self.depthwise_convs = nn.LayerList([
ConvNormLayer(
channel,
channel,
filter_size=3,
stride=stride,
groups=channel,
norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay) for channel in branch_channels
])
self.spatial_weighting = nn.LayerList([
SpatialWeightingModule(
channel,
ratio=4,
freeze_norm=freeze_norm,
norm_decay=norm_decay) for channel in branch_channels
])
def forward(self, x):
x = [s.chunk(2, axis=1) for s in x]
x1 = [s[0] for s in x]
x2 = [s[1] for s in x]
x2 = self.cross_resolution_weighting(x2)
x2 = [dw(s) for s, dw in zip(x2, self.depthwise_convs)]
x2 = [sw(s) for s, sw in zip(x2, self.spatial_weighting)]
out = [paddle.concat([s1, s2], axis=1) for s1, s2 in zip(x1, x2)]
out = [channel_shuffle(s, groups=2) for s in out]
return out
class ShuffleUnit(nn.Layer):
def __init__(self,
in_channel,
out_channel,
stride,
norm_type='bn',
freeze_norm=False,
norm_decay=0.):
super(ShuffleUnit, self).__init__()
branch_channel = out_channel // 2
self.stride = stride
if self.stride == 1:
assert in_channel == branch_channel * 2, \
"when stride=1, in_channel {} should equal to branch_channel*2 {}".format(in_channel, branch_channel * 2)
if stride > 1:
self.branch1 = nn.Sequential(
ConvNormLayer(
ch_in=in_channel,
ch_out=in_channel,
filter_size=3,
stride=self.stride,
groups=in_channel,
norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay),
ConvNormLayer(
ch_in=in_channel,
ch_out=branch_channel,
filter_size=1,
stride=1,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay), )
self.branch2 = nn.Sequential(
ConvNormLayer(
ch_in=branch_channel if stride == 1 else in_channel,
ch_out=branch_channel,
filter_size=1,
stride=1,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay),
ConvNormLayer(
ch_in=branch_channel,
ch_out=branch_channel,
filter_size=3,
stride=self.stride,
groups=branch_channel,
norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay),
ConvNormLayer(
ch_in=branch_channel,
ch_out=branch_channel,
filter_size=1,
stride=1,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay), )
def forward(self, x):
if self.stride > 1:
x1 = self.branch1(x)
x2 = self.branch2(x)
else:
x1, x2 = x.chunk(2, axis=1)
x2 = self.branch2(x2)
out = paddle.concat([x1, x2], axis=1)
out = channel_shuffle(out, groups=2)
return out
class IterativeHead(nn.Layer):
def __init__(self,
in_channels,
norm_type='bn',
freeze_norm=False,
norm_decay=0.):
super(IterativeHead, self).__init__()
num_branches = len(in_channels)
self.in_channels = in_channels[::-1]
projects = []
for i in range(num_branches):
if i != num_branches - 1:
projects.append(
DepthWiseSeparableConvNormLayer(
ch_in=self.in_channels[i],
ch_out=self.in_channels[i + 1],
filter_size=3,
stride=1,
dw_act=None,
pw_act='relu',
dw_norm_type=norm_type,
pw_norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay))
else:
projects.append(
DepthWiseSeparableConvNormLayer(
ch_in=self.in_channels[i],
ch_out=self.in_channels[i],
filter_size=3,
stride=1,
dw_act=None,
pw_act='relu',
dw_norm_type=norm_type,
pw_norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay))
self.projects = nn.LayerList(projects)
def forward(self, x):
x = x[::-1]
y = []
last_x = None
for i, s in enumerate(x):
if last_x is not None:
last_x = F.interpolate(
last_x,
size=paddle.shape(s)[-2:],
mode='bilinear',
align_corners=True)
s = s + last_x
s = self.projects[i](s)
y.append(s)
last_x = s
return y[::-1]
class Stem(nn.Layer):
def __init__(self,
in_channel,
stem_channel,
out_channel,
expand_ratio,
norm_type='bn',
freeze_norm=False,
norm_decay=0.):
super(Stem, self).__init__()
self.conv1 = ConvNormLayer(
in_channel,
stem_channel,
filter_size=3,
stride=2,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay)
mid_channel = int(round(stem_channel * expand_ratio))
branch_channel = stem_channel // 2
if stem_channel == out_channel:
inc_channel = out_channel - branch_channel
else:
inc_channel = out_channel - stem_channel
self.branch1 = nn.Sequential(
ConvNormLayer(
ch_in=branch_channel,
ch_out=branch_channel,
filter_size=3,
stride=2,
groups=branch_channel,
norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay),
ConvNormLayer(
ch_in=branch_channel,
ch_out=inc_channel,
filter_size=1,
stride=1,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay), )
self.expand_conv = ConvNormLayer(
ch_in=branch_channel,
ch_out=mid_channel,
filter_size=1,
stride=1,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay)
self.depthwise_conv = ConvNormLayer(
ch_in=mid_channel,
ch_out=mid_channel,
filter_size=3,
stride=2,
groups=mid_channel,
norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay)
self.linear_conv = ConvNormLayer(
ch_in=mid_channel,
ch_out=branch_channel
if stem_channel == out_channel else stem_channel,
filter_size=1,
stride=1,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay)
def forward(self, x):
x = self.conv1(x)
x1, x2 = x.chunk(2, axis=1)
x1 = self.branch1(x1)
x2 = self.expand_conv(x2)
x2 = self.depthwise_conv(x2)
x2 = self.linear_conv(x2)
out = paddle.concat([x1, x2], axis=1)
out = channel_shuffle(out, groups=2)
return out
class LiteHRNetModule(nn.Layer):
def __init__(self,
num_branches,
num_blocks,
in_channels,
reduce_ratio,
module_type,
multiscale_output=False,
with_fuse=True,
norm_type='bn',
freeze_norm=False,
norm_decay=0.):
super(LiteHRNetModule, self).__init__()
assert num_branches == len(in_channels),\
"num_branches {} should equal to num_in_channels {}".format(num_branches, len(in_channels))
assert module_type in [
'LITE', 'NAIVE'
], "module_type should be one of ['LITE', 'NAIVE']"
self.num_branches = num_branches
self.in_channels = in_channels
self.multiscale_output = multiscale_output
self.with_fuse = with_fuse
self.norm_type = 'bn'
self.module_type = module_type
if self.module_type == 'LITE':
self.layers = self._make_weighting_blocks(
num_blocks,
reduce_ratio,
freeze_norm=freeze_norm,
norm_decay=norm_decay)
elif self.module_type == 'NAIVE':
self.layers = self._make_naive_branches(
num_branches,
num_blocks,
freeze_norm=freeze_norm,
norm_decay=norm_decay)
if self.with_fuse:
self.fuse_layers = self._make_fuse_layers(
freeze_norm=freeze_norm, norm_decay=norm_decay)
self.relu = nn.ReLU()
def _make_weighting_blocks(self,
num_blocks,
reduce_ratio,
stride=1,
freeze_norm=False,
norm_decay=0.):
layers = []
for i in range(num_blocks):
layers.append(
ConditionalChannelWeightingBlock(
self.in_channels,
stride=stride,
reduce_ratio=reduce_ratio,
norm_type=self.norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay))
return nn.Sequential(*layers)
def _make_naive_branches(self,
num_branches,
num_blocks,
freeze_norm=False,
norm_decay=0.):
branches = []
for branch_idx in range(num_branches):
layers = []
for i in range(num_blocks):
layers.append(
ShuffleUnit(
self.in_channels[branch_idx],
self.in_channels[branch_idx],
stride=1,
norm_type=self.norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay))
branches.append(nn.Sequential(*layers))
return nn.LayerList(branches)
def _make_fuse_layers(self, freeze_norm=False, norm_decay=0.):
if self.num_branches == 1:
return None
fuse_layers = []
num_out_branches = self.num_branches if self.multiscale_output else 1
for i in range(num_out_branches):
fuse_layer = []
for j in range(self.num_branches):
if j > i:
fuse_layer.append(
nn.Sequential(
Conv2d(
self.in_channels[j],
self.in_channels[i],
kernel_size=1,
stride=1,
padding=0,
bias=False, ),
nn.BatchNorm2D(self.in_channels[i]),
nn.Upsample(
scale_factor=2**(j - i), mode='nearest')))
elif j == i:
fuse_layer.append(None)
else:
conv_downsamples = []
for k in range(i - j):
if k == i - j - 1:
conv_downsamples.append(
nn.Sequential(
Conv2d(
self.in_channels[j],
self.in_channels[j],
kernel_size=3,
stride=2,
padding=1,
groups=self.in_channels[j],
bias=False, ),
nn.BatchNorm2D(self.in_channels[j]),
Conv2d(
self.in_channels[j],
self.in_channels[i],
kernel_size=1,
stride=1,
padding=0,
bias=False, ),
nn.BatchNorm2D(self.in_channels[i])))
else:
conv_downsamples.append(
nn.Sequential(
Conv2d(
self.in_channels[j],
self.in_channels[j],
kernel_size=3,
stride=2,
padding=1,
groups=self.in_channels[j],
bias=False, ),
nn.BatchNorm2D(self.in_channels[j]),
Conv2d(
self.in_channels[j],
self.in_channels[j],
kernel_size=1,
stride=1,
padding=0,
bias=False, ),
nn.BatchNorm2D(self.in_channels[j]),
nn.ReLU()))
fuse_layer.append(nn.Sequential(*conv_downsamples))
fuse_layers.append(nn.LayerList(fuse_layer))
return nn.LayerList(fuse_layers)
def forward(self, x):
if self.num_branches == 1:
return [self.layers[0](x[0])]
if self.module_type == 'LITE':
out = self.layers(x)
elif self.module_type == 'NAIVE':
for i in range(self.num_branches):
x[i] = self.layers[i](x[i])
out = x
if self.with_fuse:
out_fuse = []
for i in range(len(self.fuse_layers)):
y = out[0] if i == 0 else self.fuse_layers[i][0](out[0])
for j in range(self.num_branches):
if j == 0:
y += y
elif i == j:
y += out[j]
else:
y += self.fuse_layers[i][j](out[j])
if i == 0:
out[i] = y
out_fuse.append(self.relu(y))
out = out_fuse
elif not self.multiscale_output:
out = [out[0]]
return out
class LiteHRNet(nn.Layer):
"""
@inproceedings{Yulitehrnet21,
title={Lite-HRNet: A Lightweight High-Resolution Network},
author={Yu, Changqian and Xiao, Bin and Gao, Changxin and Yuan, Lu and Zhang, Lei and Sang, Nong and Wang, Jingdong},
booktitle={CVPR},year={2021}
}
Args:
network_type (str): the network_type should be one of ["lite_18", "lite_30", "naive", "wider_naive"],
"naive": Simply combining the shuffle block in ShuffleNet and the highresolution design pattern in HRNet.
"wider_naive": Naive network with wider channels in each block.
"lite_18": Lite-HRNet-18, which replaces the pointwise convolution in a shuffle block by conditional channel weighting.
"lite_30": Lite-HRNet-30, with more blocks compared with Lite-HRNet-18.
freeze_at (int): the stage to freeze
freeze_norm (bool): whether to freeze norm in HRNet
norm_decay (float): weight decay for normalization layer weights
return_idx (List): the stage to return
"""
def __init__(self,
network_type,
freeze_at=0,
freeze_norm=True,
norm_decay=0.,
return_idx=[0, 1, 2, 3],
use_head=False,
pretrained=None):
super(LiteHRNet, self).__init__()
if isinstance(return_idx, Integral):
return_idx = [return_idx]
assert network_type in ["lite_18", "lite_30", "naive", "wider_naive"], \
"the network_type should be one of [lite_18, lite_30, naive, wider_naive]"
assert len(return_idx) > 0, "need one or more return index"
self.freeze_at = freeze_at
self.freeze_norm = freeze_norm
self.norm_decay = norm_decay
self.return_idx = return_idx
self.norm_type = 'bn'
self.use_head = use_head
self.pretrained = pretrained
self.module_configs = {
"lite_18": {
"num_modules": [2, 4, 2],
"num_branches": [2, 3, 4],
"num_blocks": [2, 2, 2],
"module_type": ["LITE", "LITE", "LITE"],
"reduce_ratios": [8, 8, 8],
"num_channels": [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
},
"lite_30": {
"num_modules": [3, 8, 3],
"num_branches": [2, 3, 4],
"num_blocks": [2, 2, 2],
"module_type": ["LITE", "LITE", "LITE"],
"reduce_ratios": [8, 8, 8],
"num_channels": [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
},
"naive": {
"num_modules": [2, 4, 2],
"num_branches": [2, 3, 4],
"num_blocks": [2, 2, 2],
"module_type": ["NAIVE", "NAIVE", "NAIVE"],
"reduce_ratios": [1, 1, 1],
"num_channels": [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
},
"wider_naive": {
"num_modules": [2, 4, 2],
"num_branches": [2, 3, 4],
"num_blocks": [2, 2, 2],
"module_type": ["NAIVE", "NAIVE", "NAIVE"],
"reduce_ratios": [1, 1, 1],
"num_channels": [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
},
}
self.stages_config = self.module_configs[network_type]
self.stem = Stem(3, 32, 32, 1)
num_channels_pre_layer = [32]
for stage_idx in range(3):
num_channels = self.stages_config["num_channels"][stage_idx]
setattr(self, 'transition{}'.format(stage_idx),
self._make_transition_layer(num_channels_pre_layer,
num_channels, self.freeze_norm,
self.norm_decay))
stage, num_channels_pre_layer = self._make_stage(
self.stages_config, stage_idx, num_channels, True,
self.freeze_norm, self.norm_decay)
setattr(self, 'stage{}'.format(stage_idx), stage)
num_channels = self.stages_config["num_channels"][-1]
self.feat_channels = num_channels
if self.use_head:
self.head_layer = IterativeHead(num_channels_pre_layer, 'bn',
self.freeze_norm, self.norm_decay)
self.feat_channels = [num_channels[0]]
for i in range(1, len(num_channels)):
self.feat_channels.append(num_channels[i] // 2)
self.init_weight()
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
def _make_transition_layer(self,
num_channels_pre_layer,
num_channels_cur_layer,
freeze_norm=False,
norm_decay=0.):
num_branches_pre = len(num_channels_pre_layer)
num_branches_cur = len(num_channels_cur_layer)
transition_layers = []
for i in range(num_branches_cur):
if i < num_branches_pre:
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
transition_layers.append(
nn.Sequential(
Conv2d(
num_channels_pre_layer[i],
num_channels_pre_layer[i],
kernel_size=3,
stride=1,
padding=1,
groups=num_channels_pre_layer[i],
bias=False),
nn.BatchNorm2D(num_channels_pre_layer[i]),
Conv2d(
num_channels_pre_layer[i],
num_channels_cur_layer[i],
kernel_size=1,
stride=1,
padding=0,
bias=False, ),
nn.BatchNorm2D(num_channels_cur_layer[i]),
nn.ReLU()))
else:
transition_layers.append(None)
else:
conv_downsamples = []
for j in range(i + 1 - num_branches_pre):
conv_downsamples.append(
nn.Sequential(
Conv2d(
num_channels_pre_layer[-1],
num_channels_pre_layer[-1],
groups=num_channels_pre_layer[-1],
kernel_size=3,
stride=2,
padding=1,
bias=False, ),
nn.BatchNorm2D(num_channels_pre_layer[-1]),
Conv2d(
num_channels_pre_layer[-1],
num_channels_cur_layer[i]
if j == i - num_branches_pre else
num_channels_pre_layer[-1],
kernel_size=1,
stride=1,
padding=0,
bias=False, ),
nn.BatchNorm2D(num_channels_cur_layer[i]
if j == i - num_branches_pre else
num_channels_pre_layer[-1]),
nn.ReLU()))
transition_layers.append(nn.Sequential(*conv_downsamples))
return nn.LayerList(transition_layers)
def _make_stage(self,
stages_config,
stage_idx,
in_channels,
multiscale_output,
freeze_norm=False,
norm_decay=0.):
num_modules = stages_config["num_modules"][stage_idx]
num_branches = stages_config["num_branches"][stage_idx]
num_blocks = stages_config["num_blocks"][stage_idx]
reduce_ratio = stages_config['reduce_ratios'][stage_idx]
module_type = stages_config['module_type'][stage_idx]
modules = []
for i in range(num_modules):
if not multiscale_output and i == num_modules - 1:
reset_multiscale_output = False
else:
reset_multiscale_output = True
modules.append(
LiteHRNetModule(
num_branches,
num_blocks,
in_channels,
reduce_ratio,
module_type,
multiscale_output=reset_multiscale_output,
with_fuse=True,
freeze_norm=freeze_norm,
norm_decay=norm_decay))
in_channels = modules[-1].in_channels
return nn.Sequential(*modules), in_channels
def forward(self, x):
x = self.stem(x)
y_list = [x]
for stage_idx in range(3):
x_list = []
transition = getattr(self, 'transition{}'.format(stage_idx))
for j in range(self.stages_config["num_branches"][stage_idx]):
if transition[j] is not None:
if j >= len(y_list):
x_list.append(transition[j](y_list[-1]))
else:
x_list.append(transition[j](y_list[j]))
else:
x_list.append(y_list[j])
y_list = getattr(self, 'stage{}'.format(stage_idx))(x_list)
if self.use_head:
y_list = self.head_layer(y_list)
res = []
for i, layer in enumerate(y_list):
if i == self.freeze_at:
layer.stop_gradient = True
if i in self.return_idx:
res.append(layer)
return res
@manager.BACKBONES.add_component
def Lite_HRNet_18(**kwargs):
model = LiteHRNet(network_type="lite_18", **kwargs)
return model
@manager.BACKBONES.add_component
def Lite_HRNet_30(**kwargs):
model = LiteHRNet(network_type="lite_30", **kwargs)
return model
@manager.BACKBONES.add_component
def Lite_HRNet_naive(**kwargs):
model = LiteHRNet(network_type="naive", **kwargs)
return model
@manager.BACKBONES.add_component
def Lite_HRNet_wider_naive(**kwargs):
model = LiteHRNet(network_type="wider_naive", **kwargs)
return model