Spaces:
Configuration error
Configuration error
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import math | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
import numpy as np | |
from paddleseg.cvlibs import manager | |
from paddleseg.utils import utils, logger | |
from paddleseg.models.backbones.transformer_utils import to_2tuple, DropPath, Identity | |
class Mlp(nn.Layer): | |
def __init__(self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Layer): | |
def __init__(self, | |
dim, | |
num_heads=8, | |
qkv_bias=False, | |
qk_scale=None, | |
attn_drop=0., | |
proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
x_shape = paddle.shape(x) | |
N, C = x_shape[1], x_shape[2] | |
qkv = self.qkv(x).reshape((-1, N, 3, self.num_heads, C // | |
self.num_heads)).transpose((2, 0, 3, 1, 4)) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale | |
attn = nn.functional.softmax(attn, axis=-1) | |
attn = self.attn_drop(attn) | |
x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C)) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Layer): | |
def __init__(self, | |
dim, | |
num_heads, | |
mlp_ratio=4., | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0., | |
attn_drop=0., | |
drop_path=0., | |
act_layer=nn.GELU, | |
norm_layer='nn.LayerNorm', | |
epsilon=1e-5): | |
super().__init__() | |
self.norm1 = eval(norm_layer)(dim, epsilon=epsilon) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity() | |
self.norm2 = eval(norm_layer)(dim, epsilon=epsilon) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop) | |
def forward(self, x): | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Layer): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
self.img_size = to_2tuple(img_size) | |
self.patch_size = to_2tuple(patch_size) | |
self.proj = nn.Conv2D( | |
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def num_patches_in_h(self): | |
return self.img_size[1] // self.patch_size[1] | |
def num_patches_in_w(self): | |
return self.img_size[0] // self.patch_size[0] | |
def forward(self, x): | |
x = self.proj(x) | |
return x | |
class VisionTransformer(nn.Layer): | |
""" Vision Transformer with support for patch input | |
""" | |
def __init__(self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
qkv_bias=False, | |
qk_scale=None, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
norm_layer='nn.LayerNorm', | |
epsilon=1e-5, | |
final_norm=False, | |
pretrained=None, | |
**args): | |
super().__init__() | |
self.img_size = img_size | |
self.embed_dim = embed_dim | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=in_chans, | |
embed_dim=embed_dim) | |
self.pos_w = self.patch_embed.num_patches_in_w | |
self.pos_h = self.patch_embed.num_patches_in_h | |
self.pos_embed = self.create_parameter( | |
shape=(1, self.pos_w * self.pos_h + 1, embed_dim), | |
default_initializer=paddle.nn.initializer.TruncatedNormal(std=.02)) | |
self.cls_token = self.create_parameter( | |
shape=(1, 1, embed_dim), | |
default_initializer=paddle.nn.initializer.Constant(value=0.)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = np.linspace(0, drop_path_rate, depth) | |
self.blocks = nn.LayerList([ | |
Block( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
epsilon=epsilon) for i in range(depth) | |
]) | |
self.final_norm = final_norm | |
if self.final_norm: | |
self.norm = eval(norm_layer)(embed_dim, epsilon=epsilon) | |
self.pretrained = pretrained | |
self.init_weight() | |
def init_weight(self): | |
utils.load_pretrained_model(self, self.pretrained) | |
# load and resize pos_embed | |
model_path = self.pretrained | |
if not os.path.exists(model_path): | |
model_path = utils.download_pretrained_model(model_path) | |
load_state_dict = paddle.load(model_path) | |
model_state_dict = self.state_dict() | |
pos_embed_name = "pos_embed" | |
if pos_embed_name in load_state_dict.keys(): | |
load_pos_embed = paddle.to_tensor( | |
load_state_dict[pos_embed_name], dtype="float32") | |
if self.pos_embed.shape != load_pos_embed.shape: | |
pos_size = int(math.sqrt(load_pos_embed.shape[1] - 1)) | |
model_state_dict[pos_embed_name] = self.resize_pos_embed( | |
load_pos_embed, (pos_size, pos_size), | |
(self.pos_h, self.pos_w)) | |
self.set_dict(model_state_dict) | |
logger.info("Load pos_embed and resize it from {} to {} .". | |
format(load_pos_embed.shape, self.pos_embed.shape)) | |
def resize_pos_embed(self, pos_embed, old_hw, new_hw): | |
""" | |
Resize pos_embed weight. | |
Args: | |
pos_embed (Tensor): the pos_embed weight | |
old_hw (list[int]): the height and width of old pos_embed | |
new_hw (list[int]): the height and width of new pos_embed | |
Returns: | |
Tensor: the resized pos_embed weight | |
""" | |
cls_pos_embed = pos_embed[:, :1, :] | |
pos_embed = pos_embed[:, 1:, :] | |
pos_embed = pos_embed.transpose([0, 2, 1]) | |
pos_embed = pos_embed.reshape([1, -1, old_hw[0], old_hw[1]]) | |
pos_embed = F.interpolate( | |
pos_embed, new_hw, mode='bicubic', align_corners=False) | |
pos_embed = pos_embed.flatten(2).transpose([0, 2, 1]) | |
pos_embed = paddle.concat([cls_pos_embed, pos_embed], axis=1) | |
return pos_embed | |
def forward(self, x): | |
x = self.patch_embed(x) | |
x_shape = paddle.shape(x) # b * c * h * w | |
cls_tokens = self.cls_token.expand((x_shape[0], -1, -1)) | |
x = x.flatten(2).transpose([0, 2, 1]) # b * hw * c | |
x = paddle.concat([cls_tokens, x], axis=1) | |
if paddle.shape(x)[1] == self.pos_embed.shape[1]: | |
x = x + self.pos_embed | |
else: | |
x = x + self.resize_pos_embed(self.pos_embed, | |
(self.pos_h, self.pos_w), x_shape[2:]) | |
x = self.pos_drop(x) | |
res = [] | |
for idx, blk in enumerate(self.blocks): | |
x = blk(x) | |
if self.final_norm and idx == len(self.blocks) - 1: | |
x = self.norm(x) | |
res.append(x[:, 1:, :]) | |
return res, x_shape | |
def ViT_small_patch16_224(**kwargs): | |
model = VisionTransformer( | |
patch_size=16, | |
embed_dim=768, | |
depth=8, | |
num_heads=8, | |
mlp_ratio=3, | |
qk_scale=768**-0.5, | |
**kwargs) | |
return model | |
def ViT_base_patch16_224(**kwargs): | |
model = VisionTransformer( | |
patch_size=16, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
qkv_bias=True, | |
epsilon=1e-6, | |
**kwargs) | |
return model | |
def ViT_base_patch16_384(**kwargs): | |
model = VisionTransformer( | |
img_size=384, | |
patch_size=16, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
qkv_bias=True, | |
epsilon=1e-6, | |
**kwargs) | |
return model | |
def ViT_base_patch32_384(**kwargs): | |
model = VisionTransformer( | |
img_size=384, | |
patch_size=32, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
qkv_bias=True, | |
epsilon=1e-6, | |
**kwargs) | |
return model | |
def ViT_large_patch16_224(**kwargs): | |
model = VisionTransformer( | |
patch_size=16, | |
embed_dim=1024, | |
depth=24, | |
num_heads=16, | |
mlp_ratio=4, | |
qkv_bias=True, | |
epsilon=1e-6, | |
**kwargs) | |
return model | |
def ViT_large_patch16_384(**kwargs): | |
model = VisionTransformer( | |
img_size=384, | |
patch_size=16, | |
embed_dim=1024, | |
depth=24, | |
num_heads=16, | |
mlp_ratio=4, | |
qkv_bias=True, | |
epsilon=1e-6, | |
**kwargs) | |
return model | |
def ViT_large_patch32_384(**kwargs): | |
model = VisionTransformer( | |
img_size=384, | |
patch_size=32, | |
embed_dim=1024, | |
depth=24, | |
num_heads=16, | |
mlp_ratio=4, | |
qkv_bias=True, | |
epsilon=1e-6, | |
**kwargs) | |
return model | |
def ViT_huge_patch16_224(**kwargs): | |
model = VisionTransformer( | |
patch_size=16, | |
embed_dim=1280, | |
depth=32, | |
num_heads=16, | |
mlp_ratio=4, | |
**kwargs) | |
return model | |
def ViT_huge_patch32_384(**kwargs): | |
model = VisionTransformer( | |
img_size=384, | |
patch_size=32, | |
embed_dim=1280, | |
depth=32, | |
num_heads=16, | |
mlp_ratio=4, | |
**kwargs) | |
return model | |