Spaces:
Configuration error
Configuration error
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
from paddleseg.cvlibs import manager | |
from paddleseg.models import layers | |
from paddleseg.utils import utils | |
class HRNetW48Contrast(nn.Layer): | |
""" | |
The HRNetW48Contrast implementation based on PaddlePaddle. | |
The original article refers to | |
Wenguan Wang, Tianfei Zhou, et al. "Exploring Cross-Image Pixel Contrast for Semantic Segmentation" | |
(https://arxiv.org/abs/2101.11939). | |
Args: | |
in_channels (int): The output dimensions of backbone. | |
num_classes (int): The unique number of target classes. | |
backbone (Paddle.nn.Layer): Backbone network, currently support HRNet_W48. | |
drop_prob (float): The probability of dropout. | |
proj_dim (int): The projection dimensions. | |
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even, | |
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False. | |
pretrained (str, optional): The path or url of pretrained model. Default: None. | |
""" | |
def __init__(self, | |
in_channels, | |
num_classes, | |
backbone, | |
drop_prob, | |
proj_dim, | |
align_corners=False, | |
pretrained=None): | |
super().__init__() | |
self.in_channels = in_channels | |
self.backbone = backbone | |
self.num_classes = num_classes | |
self.proj_dim = proj_dim | |
self.align_corners = align_corners | |
self.cls_head = nn.Sequential( | |
layers.ConvBNReLU( | |
in_channels, in_channels, kernel_size=3, stride=1, padding=1), | |
nn.Dropout2D(drop_prob), | |
nn.Conv2D( | |
in_channels, | |
num_classes, | |
kernel_size=1, | |
stride=1, | |
bias_attr=False), ) | |
self.proj_head = ProjectionHead( | |
dim_in=in_channels, proj_dim=self.proj_dim) | |
self.pretrained = pretrained | |
self.init_weight() | |
def init_weight(self): | |
if self.pretrained is not None: | |
utils.load_entire_model(self, self.pretrained) | |
def forward(self, x): | |
feats = self.backbone(x)[0] | |
out = self.cls_head(feats) | |
logit_list = [] | |
if self.training: | |
emb = self.proj_head(feats) | |
logit_list.append( | |
F.interpolate( | |
out, | |
paddle.shape(x)[2:], | |
mode='bilinear', | |
align_corners=self.align_corners)) | |
logit_list.append({'seg': out, 'embed': emb}) | |
else: | |
logit_list.append( | |
F.interpolate( | |
out, | |
paddle.shape(x)[2:], | |
mode='bilinear', | |
align_corners=self.align_corners)) | |
return logit_list | |
class ProjectionHead(nn.Layer): | |
""" | |
The projection head used by contrast learning. | |
Args: | |
dim_in (int): The dimensions of input features. | |
proj_dim (int, optional): The output dimensions of projection head. Default: 256. | |
proj (str, optional): The type of projection head, only support 'linear' and 'convmlp'. Default: 'convmlp'. | |
""" | |
def __init__(self, dim_in, proj_dim=256, proj='convmlp'): | |
super(ProjectionHead, self).__init__() | |
if proj == 'linear': | |
self.proj = nn.Conv2D(dim_in, proj_dim, kernel_size=1) | |
elif proj == 'convmlp': | |
self.proj = nn.Sequential( | |
layers.ConvBNReLU( | |
dim_in, dim_in, kernel_size=1), | |
nn.Conv2D( | |
dim_in, proj_dim, kernel_size=1), ) | |
else: | |
raise ValueError( | |
"The type of project head only support 'linear' and 'convmlp', but got {}." | |
.format(proj)) | |
def forward(self, x): | |
return F.normalize(self.proj(x), p=2, axis=1) | |