pipeline_paddle / paddleseg /models /hrnet_contrast.py
sidharthism's picture
Added model *.pdparams
1ab1a09
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
from paddleseg.models import layers
from paddleseg.utils import utils
@manager.MODELS.add_component
class HRNetW48Contrast(nn.Layer):
"""
The HRNetW48Contrast implementation based on PaddlePaddle.
The original article refers to
Wenguan Wang, Tianfei Zhou, et al. "Exploring Cross-Image Pixel Contrast for Semantic Segmentation"
(https://arxiv.org/abs/2101.11939).
Args:
in_channels (int): The output dimensions of backbone.
num_classes (int): The unique number of target classes.
backbone (Paddle.nn.Layer): Backbone network, currently support HRNet_W48.
drop_prob (float): The probability of dropout.
proj_dim (int): The projection dimensions.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self,
in_channels,
num_classes,
backbone,
drop_prob,
proj_dim,
align_corners=False,
pretrained=None):
super().__init__()
self.in_channels = in_channels
self.backbone = backbone
self.num_classes = num_classes
self.proj_dim = proj_dim
self.align_corners = align_corners
self.cls_head = nn.Sequential(
layers.ConvBNReLU(
in_channels, in_channels, kernel_size=3, stride=1, padding=1),
nn.Dropout2D(drop_prob),
nn.Conv2D(
in_channels,
num_classes,
kernel_size=1,
stride=1,
bias_attr=False), )
self.proj_head = ProjectionHead(
dim_in=in_channels, proj_dim=self.proj_dim)
self.pretrained = pretrained
self.init_weight()
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
def forward(self, x):
feats = self.backbone(x)[0]
out = self.cls_head(feats)
logit_list = []
if self.training:
emb = self.proj_head(feats)
logit_list.append(
F.interpolate(
out,
paddle.shape(x)[2:],
mode='bilinear',
align_corners=self.align_corners))
logit_list.append({'seg': out, 'embed': emb})
else:
logit_list.append(
F.interpolate(
out,
paddle.shape(x)[2:],
mode='bilinear',
align_corners=self.align_corners))
return logit_list
class ProjectionHead(nn.Layer):
"""
The projection head used by contrast learning.
Args:
dim_in (int): The dimensions of input features.
proj_dim (int, optional): The output dimensions of projection head. Default: 256.
proj (str, optional): The type of projection head, only support 'linear' and 'convmlp'. Default: 'convmlp'.
"""
def __init__(self, dim_in, proj_dim=256, proj='convmlp'):
super(ProjectionHead, self).__init__()
if proj == 'linear':
self.proj = nn.Conv2D(dim_in, proj_dim, kernel_size=1)
elif proj == 'convmlp':
self.proj = nn.Sequential(
layers.ConvBNReLU(
dim_in, dim_in, kernel_size=1),
nn.Conv2D(
dim_in, proj_dim, kernel_size=1), )
else:
raise ValueError(
"The type of project head only support 'linear' and 'convmlp', but got {}."
.format(proj))
def forward(self, x):
return F.normalize(self.proj(x), p=2, axis=1)