Spaces:
Configuration error
Configuration error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
from paddleseg.models import layers | |
from paddleseg.cvlibs import manager | |
from paddleseg.utils import utils | |
class ISANet(nn.Layer): | |
"""Interlaced Sparse Self-Attention for Semantic Segmentation. | |
The original article refers to Lang Huang, et al. "Interlaced Sparse Self-Attention for Semantic Segmentation" | |
(https://arxiv.org/abs/1907.12273). | |
Args: | |
num_classes (int): The unique number of target classes. | |
backbone (Paddle.nn.Layer): A backbone network. | |
backbone_indices (tuple): The values in the tuple indicate the indices of output of backbone. | |
isa_channels (int): The channels of ISA Module. | |
down_factor (tuple): Divide the height and width dimension to (Ph, PW) groups. | |
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True. | |
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature | |
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False. | |
pretrained (str, optional): The path or url of pretrained model. Default: None. | |
""" | |
def __init__(self, | |
num_classes, | |
backbone, | |
backbone_indices=(2, 3), | |
isa_channels=256, | |
down_factor=(8, 8), | |
enable_auxiliary_loss=True, | |
align_corners=False, | |
pretrained=None): | |
super().__init__() | |
self.backbone = backbone | |
self.backbone_indices = backbone_indices | |
in_channels = [self.backbone.feat_channels[i] for i in backbone_indices] | |
self.head = ISAHead(num_classes, in_channels, isa_channels, down_factor, | |
enable_auxiliary_loss) | |
self.align_corners = align_corners | |
self.pretrained = pretrained | |
self.init_weight() | |
def forward(self, x): | |
feats = self.backbone(x) | |
feats = [feats[i] for i in self.backbone_indices] | |
logit_list = self.head(feats) | |
logit_list = [ | |
F.interpolate( | |
logit, | |
paddle.shape(x)[2:], | |
mode='bilinear', | |
align_corners=self.align_corners, | |
align_mode=1) for logit in logit_list | |
] | |
return logit_list | |
def init_weight(self): | |
if self.pretrained is not None: | |
utils.load_entire_model(self, self.pretrained) | |
class ISAHead(nn.Layer): | |
""" | |
The ISAHead. | |
Args: | |
num_classes (int): The unique number of target classes. | |
in_channels (tuple): The number of input channels. | |
isa_channels (int): The channels of ISA Module. | |
down_factor (tuple): Divide the height and width dimension to (Ph, PW) groups. | |
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True. | |
""" | |
def __init__(self, num_classes, in_channels, isa_channels, down_factor, | |
enable_auxiliary_loss): | |
super(ISAHead, self).__init__() | |
self.in_channels = in_channels[-1] | |
inter_channels = self.in_channels // 4 | |
self.inter_channels = inter_channels | |
self.down_factor = down_factor | |
self.enable_auxiliary_loss = enable_auxiliary_loss | |
self.in_conv = layers.ConvBNReLU( | |
self.in_channels, inter_channels, 3, bias_attr=False) | |
self.global_relation = SelfAttentionBlock(inter_channels, isa_channels) | |
self.local_relation = SelfAttentionBlock(inter_channels, isa_channels) | |
self.out_conv = layers.ConvBNReLU( | |
inter_channels * 2, inter_channels, 1, bias_attr=False) | |
self.cls = nn.Sequential( | |
nn.Dropout2D(p=0.1), nn.Conv2D(inter_channels, num_classes, 1)) | |
self.aux = nn.Sequential( | |
layers.ConvBNReLU( | |
in_channels=1024, | |
out_channels=256, | |
kernel_size=3, | |
bias_attr=False), | |
nn.Dropout2D(p=0.1), | |
nn.Conv2D(256, num_classes, 1)) | |
def forward(self, feat_list): | |
C3, C4 = feat_list | |
x = self.in_conv(C4) | |
x_shape = paddle.shape(x) | |
P_h, P_w = self.down_factor | |
Q_h, Q_w = paddle.ceil(x_shape[2] / P_h).astype('int32'), paddle.ceil( | |
x_shape[3] / P_w).astype('int32') | |
pad_h, pad_w = (Q_h * P_h - x_shape[2]).astype('int32'), ( | |
Q_w * P_w - x_shape[3]).astype('int32') | |
if pad_h > 0 or pad_w > 0: | |
padding = paddle.concat( | |
[ | |
pad_w // 2, pad_w - pad_w // 2, pad_h // 2, | |
pad_h - pad_h // 2 | |
], | |
axis=0) | |
feat = F.pad(x, padding) | |
else: | |
feat = x | |
feat = feat.reshape([0, x_shape[1], Q_h, P_h, Q_w, P_w]) | |
feat = feat.transpose([0, 3, 5, 1, 2, | |
4]).reshape([-1, self.inter_channels, Q_h, Q_w]) | |
feat = self.global_relation(feat) | |
feat = feat.reshape([x_shape[0], P_h, P_w, x_shape[1], Q_h, Q_w]) | |
feat = feat.transpose([0, 4, 5, 3, 1, | |
2]).reshape([-1, self.inter_channels, P_h, P_w]) | |
feat = self.local_relation(feat) | |
feat = feat.reshape([x_shape[0], Q_h, Q_w, x_shape[1], P_h, P_w]) | |
feat = feat.transpose([0, 3, 1, 4, 2, 5]).reshape( | |
[0, self.inter_channels, P_h * Q_h, P_w * Q_w]) | |
if pad_h > 0 or pad_w > 0: | |
feat = paddle.slice( | |
feat, | |
axes=[2, 3], | |
starts=[pad_h // 2, pad_w // 2], | |
ends=[pad_h // 2 + x_shape[2], pad_w // 2 + x_shape[3]]) | |
feat = self.out_conv(paddle.concat([feat, x], axis=1)) | |
output = self.cls(feat) | |
if self.enable_auxiliary_loss: | |
auxout = self.aux(C3) | |
return [output, auxout] | |
else: | |
return [output] | |
class SelfAttentionBlock(layers.AttentionBlock): | |
"""General self-attention block/non-local block. | |
Args: | |
in_channels (int): Input channels of key/query feature. | |
channels (int): Output channels of key/query transform. | |
""" | |
def __init__(self, in_channels, channels): | |
super(SelfAttentionBlock, self).__init__( | |
key_in_channels=in_channels, | |
query_in_channels=in_channels, | |
channels=channels, | |
out_channels=in_channels, | |
share_key_query=False, | |
query_downsample=None, | |
key_downsample=None, | |
key_query_num_convs=2, | |
key_query_norm=True, | |
value_out_num_convs=1, | |
value_out_norm=False, | |
matmul_norm=True, | |
with_out=False) | |
self.output_project = self.build_project( | |
in_channels, in_channels, num_convs=1, use_conv_module=True) | |
def forward(self, x): | |
context = super(SelfAttentionBlock, self).forward(x, x) | |
return self.output_project(context) | |