Spaces:
Configuration error
Configuration error
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
from paddleseg.models import layers | |
from paddleseg.cvlibs import manager | |
from paddleseg.utils import utils | |
class PFPNNet(nn.Layer): | |
""" | |
The Panoptic Feature Pyramid Networks implementation based on PaddlePaddle. | |
The original article refers to | |
Alexander Kirillov, Ross Girshick, Kaiming He, Piotr Dollár, et al. "Panoptic Feature Pyramid Networks" | |
(https://arxiv.org/abs/1901.02446) | |
Args: | |
num_classes (int): The unique number of target classes. | |
backbone (Paddle.nn.Layer): Backbone network, currently support Resnet50/101. | |
backbone_indices (tuple): Four values in the tuple indicate the indices of output of backbone. | |
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: False. | |
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even, | |
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False. | |
pretrained (str, optional): The path or url of pretrained model. Default: None. | |
""" | |
def __init__(self, | |
num_classes, | |
backbone, | |
backbone_indices, | |
channels, | |
enable_auxiliary_loss=False, | |
align_corners=False, | |
dropout_ratio=0.1, | |
fpn_inplanes=[256, 512, 1024, 2048], | |
pretrained=None): | |
super(PFPNNet, self).__init__() | |
self.backbone = backbone | |
self.backbone_indices = backbone_indices | |
self.in_channels = [ | |
self.backbone.feat_channels[i] for i in backbone_indices | |
] | |
self.align_corners = align_corners | |
self.pretrained = pretrained | |
self.enable_auxiliary_loss = enable_auxiliary_loss | |
self.head = PFPNHead( | |
num_class=num_classes, | |
fpn_inplanes=fpn_inplanes, | |
dropout_ratio=dropout_ratio, | |
channels=channels, | |
fpn_dim=channels, | |
enable_auxiliary_loss=self.enable_auxiliary_loss) | |
self.init_weight() | |
def forward(self, x): | |
feats = self.backbone(x) | |
feats = [feats[i] for i in self.backbone_indices] | |
logit_list = self.head(feats) | |
return [ | |
F.interpolate( | |
logit, | |
paddle.shape(x)[2:], | |
mode='bilinear', | |
align_corners=self.align_corners) for logit in logit_list | |
] | |
def init_weight(self): | |
if self.pretrained is not None: | |
utils.load_entire_model(self, self.pretrained) | |
class PFPNHead(nn.Layer): | |
""" | |
The PFPNHead implementation. | |
Args: | |
inplane (int): Input channels of PPM module. | |
num_class (int): The unique number of target classes. | |
fpn_inplanes (list): The feature channels from backbone. | |
fpn_dim (int, optional): The input channels of FPN module. Default: 512. | |
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: False. | |
""" | |
def __init__(self, | |
num_class, | |
fpn_inplanes, | |
channels, | |
dropout_ratio=0.1, | |
fpn_dim=256, | |
enable_auxiliary_loss=False, | |
align_corners=False): | |
super(PFPNHead, self).__init__() | |
self.enable_auxiliary_loss = enable_auxiliary_loss | |
self.align_corners = align_corners | |
self.lateral_convs = nn.LayerList() | |
self.fpn_out = nn.LayerList() | |
for fpn_inplane in fpn_inplanes: | |
self.lateral_convs.append( | |
nn.Sequential( | |
nn.Conv2D(fpn_inplane, fpn_dim, 1), | |
layers.SyncBatchNorm(fpn_dim), nn.ReLU())) | |
self.fpn_out.append( | |
nn.Sequential( | |
layers.ConvBNReLU( | |
fpn_dim, fpn_dim, 3, bias_attr=False))) | |
self.scale_heads = nn.LayerList() | |
for index in range(len(fpn_inplanes)): | |
head_length = max( | |
1, | |
int(np.log2(fpn_inplanes[index]) - np.log2(fpn_inplanes[0]))) | |
scale_head = nn.LayerList() | |
for head_index in range(head_length): | |
scale_head.append( | |
layers.ConvBNReLU( | |
fpn_dim, | |
channels, | |
3, | |
padding=1, )) | |
if fpn_inplanes[index] != fpn_inplanes[0]: | |
scale_head.append( | |
nn.Upsample( | |
scale_factor=2, | |
mode='bilinear', | |
align_corners=align_corners)) | |
self.scale_heads.append(nn.Sequential(*scale_head)) | |
if dropout_ratio: | |
self.dropout = nn.Dropout2D(dropout_ratio) | |
if self.enable_auxiliary_loss: | |
self.dsn = nn.Sequential( | |
layers.ConvBNReLU( | |
fpn_inplanes[2], fpn_inplanes[2], 3, padding=1), | |
nn.Dropout2D(dropout_ratio), | |
nn.Conv2D( | |
fpn_inplanes[2], num_class, kernel_size=1)) | |
else: | |
self.dropout = None | |
if self.enable_auxiliary_loss: | |
self.dsn = nn.Sequential( | |
layers.ConvBNReLU( | |
fpn_inplanes[2], fpn_inplanes[2], 3, padding=1), | |
nn.Conv2D( | |
fpn_inplanes[2], num_class, kernel_size=1)) | |
self.conv_last = nn.Sequential( | |
layers.ConvBNReLU( | |
len(fpn_inplanes) * fpn_dim, fpn_dim, 3, bias_attr=False), | |
nn.Conv2D( | |
fpn_dim, num_class, kernel_size=1)) | |
self.conv_seg = nn.Conv2D(channels, num_class, kernel_size=1) | |
def cls_seg(self, feat): | |
if self.dropout is not None: | |
feat = self.dropout(feat) | |
output = self.conv_seg(feat) | |
return output | |
def forward(self, conv_out): | |
last_out = self.lateral_convs[-1](conv_out[-1]) | |
f = last_out | |
fpn_feature_list = [last_out] | |
for i in reversed(range(len(conv_out) - 1)): | |
conv_x = conv_out[i] | |
conv_x = self.lateral_convs[i](conv_x) | |
prev_shape = paddle.shape(conv_x)[2:] | |
f = conv_x + F.interpolate( | |
f, prev_shape, mode='bilinear', align_corners=True) | |
fpn_feature_list.append(self.fpn_out[i](f)) | |
output_size = paddle.shape(fpn_feature_list[-1])[2:] | |
x = self.scale_heads[0](fpn_feature_list[-1]) | |
for index in range(len(self.scale_heads) - 2, 0, -1): | |
x = x + F.interpolate( | |
self.scale_heads[index](fpn_feature_list[index]), | |
size=output_size, | |
mode='bilinear', | |
align_corners=self.align_corners) | |
x = self.cls_seg(x) | |
if self.enable_auxiliary_loss: | |
dsn = self.dsn(conv_out[2]) | |
return [x, dsn] | |
else: | |
return [x] | |