Spaces:
Configuration error
Configuration error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import paddle | |
import paddle.nn.functional as F | |
import sklearn.metrics as skmetrics | |
def calculate_area(pred, label, num_classes, ignore_index=255): | |
""" | |
Calculate intersect, prediction and label area | |
Args: | |
pred (Tensor): The prediction by model. | |
label (Tensor): The ground truth of image. | |
num_classes (int): The unique number of target classes. | |
ignore_index (int): Specifies a target value that is ignored. Default: 255. | |
Returns: | |
Tensor: The intersection area of prediction and the ground on all class. | |
Tensor: The prediction area on all class. | |
Tensor: The ground truth area on all class | |
""" | |
if len(pred.shape) == 4: | |
pred = paddle.squeeze(pred, axis=1) | |
if len(label.shape) == 4: | |
label = paddle.squeeze(label, axis=1) | |
if not pred.shape == label.shape: | |
raise ValueError('Shape of `pred` and `label should be equal, ' | |
'but there are {} and {}.'.format(pred.shape, | |
label.shape)) | |
pred_area = [] | |
label_area = [] | |
intersect_area = [] | |
mask = label != ignore_index | |
for i in range(num_classes): | |
pred_i = paddle.logical_and(pred == i, mask) | |
label_i = label == i | |
intersect_i = paddle.logical_and(pred_i, label_i) | |
pred_area.append(paddle.sum(paddle.cast(pred_i, "int32"))) | |
label_area.append(paddle.sum(paddle.cast(label_i, "int32"))) | |
intersect_area.append(paddle.sum(paddle.cast(intersect_i, "int32"))) | |
pred_area = paddle.concat(pred_area) | |
label_area = paddle.concat(label_area) | |
intersect_area = paddle.concat(intersect_area) | |
return intersect_area, pred_area, label_area | |
def auc_roc(logits, label, num_classes, ignore_index=None): | |
""" | |
Calculate area under the roc curve | |
Args: | |
logits (Tensor): The prediction by model on testset, of shape (N,C,H,W) . | |
label (Tensor): The ground truth of image. (N,1,H,W) | |
num_classes (int): The unique number of target classes. | |
ignore_index (int): Specifies a target value that is ignored. Default: 255. | |
Returns: | |
auc_roc(float): The area under roc curve | |
""" | |
if ignore_index or len(np.unique(label)) > num_classes: | |
raise RuntimeError('labels with ignore_index is not supported yet.') | |
if len(label.shape) != 4: | |
raise ValueError( | |
'The shape of label is not 4 dimension as (N, C, H, W), it is {}'. | |
format(label.shape)) | |
if len(logits.shape) != 4: | |
raise ValueError( | |
'The shape of logits is not 4 dimension as (N, C, H, W), it is {}'. | |
format(logits.shape)) | |
N, C, H, W = logits.shape | |
logits = np.transpose(logits, (1, 0, 2, 3)) | |
logits = logits.reshape([C, N * H * W]).transpose([1, 0]) | |
label = np.transpose(label, (1, 0, 2, 3)) | |
label = label.reshape([1, N * H * W]).squeeze() | |
if not logits.shape[0] == label.shape[0]: | |
raise ValueError('length of `logit` and `label` should be equal, ' | |
'but they are {} and {}.'.format(logits.shape[0], | |
label.shape[0])) | |
if num_classes == 2: | |
auc = skmetrics.roc_auc_score(label, logits[:, 1]) | |
else: | |
auc = skmetrics.roc_auc_score(label, logits, multi_class='ovr') | |
return auc | |
def mean_iou(intersect_area, pred_area, label_area): | |
""" | |
Calculate iou. | |
Args: | |
intersect_area (Tensor): The intersection area of prediction and ground truth on all classes. | |
pred_area (Tensor): The prediction area on all classes. | |
label_area (Tensor): The ground truth area on all classes. | |
Returns: | |
np.ndarray: iou on all classes. | |
float: mean iou of all classes. | |
""" | |
intersect_area = intersect_area.numpy() | |
pred_area = pred_area.numpy() | |
label_area = label_area.numpy() | |
union = pred_area + label_area - intersect_area | |
class_iou = [] | |
for i in range(len(intersect_area)): | |
if union[i] == 0: | |
iou = 0 | |
else: | |
iou = intersect_area[i] / union[i] | |
class_iou.append(iou) | |
miou = np.mean(class_iou) | |
return np.array(class_iou), miou | |
def dice(intersect_area, pred_area, label_area): | |
""" | |
Calculate DICE. | |
Args: | |
intersect_area (Tensor): The intersection area of prediction and ground truth on all classes. | |
pred_area (Tensor): The prediction area on all classes. | |
label_area (Tensor): The ground truth area on all classes. | |
Returns: | |
np.ndarray: DICE on all classes. | |
float: mean DICE of all classes. | |
""" | |
intersect_area = intersect_area.numpy() | |
pred_area = pred_area.numpy() | |
label_area = label_area.numpy() | |
union = pred_area + label_area | |
class_dice = [] | |
for i in range(len(intersect_area)): | |
if union[i] == 0: | |
dice = 0 | |
else: | |
dice = (2 * intersect_area[i]) / union[i] | |
class_dice.append(dice) | |
mdice = np.mean(class_dice) | |
return np.array(class_dice), mdice | |
# This is a deprecated function, please use class_measurement function. | |
def accuracy(intersect_area, pred_area): | |
""" | |
Calculate accuracy | |
Args: | |
intersect_area (Tensor): The intersection area of prediction and ground truth on all classes.. | |
pred_area (Tensor): The prediction area on all classes. | |
Returns: | |
np.ndarray: accuracy on all classes. | |
float: mean accuracy. | |
""" | |
intersect_area = intersect_area.numpy() | |
pred_area = pred_area.numpy() | |
class_acc = [] | |
for i in range(len(intersect_area)): | |
if pred_area[i] == 0: | |
acc = 0 | |
else: | |
acc = intersect_area[i] / pred_area[i] | |
class_acc.append(acc) | |
macc = np.sum(intersect_area) / np.sum(pred_area) | |
return np.array(class_acc), macc | |
def class_measurement(intersect_area, pred_area, label_area): | |
""" | |
Calculate accuracy, calss precision and class recall. | |
Args: | |
intersect_area (Tensor): The intersection area of prediction and ground truth on all classes. | |
pred_area (Tensor): The prediction area on all classes. | |
label_area (Tensor): The ground truth area on all classes. | |
Returns: | |
float: The mean accuracy. | |
np.ndarray: The precision of all classes. | |
np.ndarray: The recall of all classes. | |
""" | |
intersect_area = intersect_area.numpy() | |
pred_area = pred_area.numpy() | |
label_area = label_area.numpy() | |
mean_acc = np.sum(intersect_area) / np.sum(pred_area) | |
class_precision = [] | |
class_recall = [] | |
for i in range(len(intersect_area)): | |
precision = 0 if pred_area[i] == 0 \ | |
else intersect_area[i] / pred_area[i] | |
recall = 0 if label_area[i] == 0 \ | |
else intersect_area[i] / label_area[i] | |
class_precision.append(precision) | |
class_recall.append(recall) | |
return mean_acc, np.array(class_precision), np.array(class_recall) | |
def kappa(intersect_area, pred_area, label_area): | |
""" | |
Calculate kappa coefficient | |
Args: | |
intersect_area (Tensor): The intersection area of prediction and ground truth on all classes.. | |
pred_area (Tensor): The prediction area on all classes. | |
label_area (Tensor): The ground truth area on all classes. | |
Returns: | |
float: kappa coefficient. | |
""" | |
intersect_area = intersect_area.numpy().astype(np.float64) | |
pred_area = pred_area.numpy().astype(np.float64) | |
label_area = label_area.numpy().astype(np.float64) | |
total_area = np.sum(label_area) | |
po = np.sum(intersect_area) / total_area | |
pe = np.sum(pred_area * label_area) / (total_area * total_area) | |
kappa = (po - pe) / (1 - pe) | |
return kappa | |