Spaces:
Configuration error
Configuration error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
import time | |
import numpy as np | |
class Progbar(object): | |
""" | |
Displays a progress bar. | |
It refers to https://github.com/keras-team/keras/blob/keras-2/keras/utils/generic_utils.py | |
Args: | |
target (int): Total number of steps expected, None if unknown. | |
width (int): Progress bar width on screen. | |
verbose (int): Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose) | |
stateful_metrics (list|tuple): Iterable of string names of metrics that should *not* be | |
averaged over time. Metrics in this list will be displayed as-is. All | |
others will be averaged by the progbar before display. | |
interval (float): Minimum visual progress update interval (in seconds). | |
unit_name (str): Display name for step counts (usually "step" or "sample"). | |
""" | |
def __init__(self, | |
target, | |
width=30, | |
verbose=1, | |
interval=0.05, | |
stateful_metrics=None, | |
unit_name='step'): | |
self.target = target | |
self.width = width | |
self.verbose = verbose | |
self.interval = interval | |
self.unit_name = unit_name | |
if stateful_metrics: | |
self.stateful_metrics = set(stateful_metrics) | |
else: | |
self.stateful_metrics = set() | |
self._dynamic_display = ( | |
(hasattr(sys.stderr, 'isatty') and | |
sys.stderr.isatty()) or 'ipykernel' in sys.modules or | |
'posix' in sys.modules or 'PYCHARM_HOSTED' in os.environ) | |
self._total_width = 0 | |
self._seen_so_far = 0 | |
# We use a dict + list to avoid garbage collection | |
# issues found in OrderedDict | |
self._values = {} | |
self._values_order = [] | |
self._start = time.time() | |
self._last_update = 0 | |
def update(self, current, values=None, finalize=None): | |
""" | |
Updates the progress bar. | |
Args: | |
current (int): Index of current step. | |
values (list): List of tuples: `(name, value_for_last_step)`. If `name` is in | |
`stateful_metrics`, `value_for_last_step` will be displayed as-is. | |
Else, an average of the metric over time will be displayed. | |
finalize (bool): Whether this is the last update for the progress bar. If | |
`None`, defaults to `current >= self.target`. | |
""" | |
if finalize is None: | |
if self.target is None: | |
finalize = False | |
else: | |
finalize = current >= self.target | |
values = values or [] | |
for k, v in values: | |
if k not in self._values_order: | |
self._values_order.append(k) | |
if k not in self.stateful_metrics: | |
# In the case that progress bar doesn't have a target value in the first | |
# epoch, both on_batch_end and on_epoch_end will be called, which will | |
# cause 'current' and 'self._seen_so_far' to have the same value. Force | |
# the minimal value to 1 here, otherwise stateful_metric will be 0s. | |
value_base = max(current - self._seen_so_far, 1) | |
if k not in self._values: | |
self._values[k] = [v * value_base, value_base] | |
else: | |
self._values[k][0] += v * value_base | |
self._values[k][1] += value_base | |
else: | |
# Stateful metrics output a numeric value. This representation | |
# means "take an average from a single value" but keeps the | |
# numeric formatting. | |
self._values[k] = [v, 1] | |
self._seen_so_far = current | |
now = time.time() | |
info = ' - %.0fs' % (now - self._start) | |
if self.verbose == 1: | |
if now - self._last_update < self.interval and not finalize: | |
return | |
prev_total_width = self._total_width | |
if self._dynamic_display: | |
sys.stderr.write('\b' * prev_total_width) | |
sys.stderr.write('\r') | |
else: | |
sys.stderr.write('\n') | |
if self.target is not None: | |
numdigits = int(np.log10(self.target)) + 1 | |
bar = ('%' + str(numdigits) + 'd/%d [') % (current, self.target) | |
prog = float(current) / self.target | |
prog_width = int(self.width * prog) | |
if prog_width > 0: | |
bar += ('=' * (prog_width - 1)) | |
if current < self.target: | |
bar += '>' | |
else: | |
bar += '=' | |
bar += ('.' * (self.width - prog_width)) | |
bar += ']' | |
else: | |
bar = '%7d/Unknown' % current | |
self._total_width = len(bar) | |
sys.stderr.write(bar) | |
if current: | |
time_per_unit = (now - self._start) / current | |
else: | |
time_per_unit = 0 | |
if self.target is None or finalize: | |
if time_per_unit >= 1 or time_per_unit == 0: | |
info += ' %.0fs/%s' % (time_per_unit, self.unit_name) | |
elif time_per_unit >= 1e-3: | |
info += ' %.0fms/%s' % (time_per_unit * 1e3, self.unit_name) | |
else: | |
info += ' %.0fus/%s' % (time_per_unit * 1e6, self.unit_name) | |
else: | |
eta = time_per_unit * (self.target - current) | |
if eta > 3600: | |
eta_format = '%d:%02d:%02d' % (eta // 3600, | |
(eta % 3600) // 60, eta % 60) | |
elif eta > 60: | |
eta_format = '%d:%02d' % (eta // 60, eta % 60) | |
else: | |
eta_format = '%ds' % eta | |
info = ' - ETA: %s' % eta_format | |
for k in self._values_order: | |
info += ' - %s:' % k | |
if isinstance(self._values[k], list): | |
avg = np.mean(self._values[k][0] / | |
max(1, self._values[k][1])) | |
if abs(avg) > 1e-3: | |
info += ' %.4f' % avg | |
else: | |
info += ' %.4e' % avg | |
else: | |
info += ' %s' % self._values[k] | |
self._total_width += len(info) | |
if prev_total_width > self._total_width: | |
info += (' ' * (prev_total_width - self._total_width)) | |
if finalize: | |
info += '\n' | |
sys.stderr.write(info) | |
sys.stderr.flush() | |
elif self.verbose == 2: | |
if finalize: | |
numdigits = int(np.log10(self.target)) + 1 | |
count = ('%' + str(numdigits) + 'd/%d') % (current, self.target) | |
info = count + info | |
for k in self._values_order: | |
info += ' - %s:' % k | |
avg = np.mean(self._values[k][0] / | |
max(1, self._values[k][1])) | |
if avg > 1e-3: | |
info += ' %.4f' % avg | |
else: | |
info += ' %.4e' % avg | |
info += '\n' | |
sys.stderr.write(info) | |
sys.stderr.flush() | |
self._last_update = now | |
def add(self, n, values=None): | |
self.update(self._seen_so_far + n, values) | |