# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddleseg.cvlibs import manager from paddleseg.models import layers from paddleseg.utils import utils __all__ = [ "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd" ] class ConvBNLayer(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, is_vd_mode=False, act=None, data_format='NCHW'): super(ConvBNLayer, self).__init__() if dilation != 1 and kernel_size != 3: raise RuntimeError("When the dilation isn't 1," \ "the kernel_size should be 3.") self.is_vd_mode = is_vd_mode self._pool2d_avg = nn.AvgPool2D( kernel_size=2, stride=2, padding=0, ceil_mode=True, data_format=data_format) self._conv = nn.Conv2D( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2 \ if dilation == 1 else dilation, dilation=dilation, groups=groups, bias_attr=False, data_format=data_format) self._batch_norm = layers.SyncBatchNorm( out_channels, data_format=data_format) self._act_op = layers.Activation(act=act) def forward(self, inputs): if self.is_vd_mode: inputs = self._pool2d_avg(inputs) y = self._conv(inputs) y = self._batch_norm(y) y = self._act_op(y) return y class BottleneckBlock(nn.Layer): def __init__(self, in_channels, out_channels, stride, shortcut=True, if_first=False, dilation=1, data_format='NCHW'): super(BottleneckBlock, self).__init__() self.data_format = data_format self.conv0 = ConvBNLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=1, act='relu', data_format=data_format) self.dilation = dilation self.conv1 = ConvBNLayer( in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=stride, act='relu', dilation=dilation, data_format=data_format) self.conv2 = ConvBNLayer( in_channels=out_channels, out_channels=out_channels * 4, kernel_size=1, act=None, data_format=data_format) if not shortcut: self.short = ConvBNLayer( in_channels=in_channels, out_channels=out_channels * 4, kernel_size=1, stride=1, is_vd_mode=False if if_first or stride == 1 else True, data_format=data_format) self.shortcut = shortcut # NOTE: Use the wrap layer for quantization training self.add = layers.Add() self.relu = layers.Activation(act="relu") def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) conv2 = self.conv2(conv1) if self.shortcut: short = inputs else: short = self.short(inputs) y = self.add(short, conv2) y = self.relu(y) return y class BasicBlock(nn.Layer): def __init__(self, in_channels, out_channels, stride, dilation=1, shortcut=True, if_first=False, data_format='NCHW'): super(BasicBlock, self).__init__() self.conv0 = ConvBNLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, dilation=dilation, act='relu', data_format=data_format) self.conv1 = ConvBNLayer( in_channels=out_channels, out_channels=out_channels, kernel_size=3, dilation=dilation, act=None, data_format=data_format) if not shortcut: self.short = ConvBNLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, is_vd_mode=False if if_first or stride == 1 else True, data_format=data_format) self.shortcut = shortcut self.dilation = dilation self.data_format = data_format self.add = layers.Add() self.relu = layers.Activation(act="relu") def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) if self.shortcut: short = inputs else: short = self.short(inputs) y = self.add(short, conv1) y = self.relu(y) return y class ResNet_vd(nn.Layer): """ The ResNet_vd implementation based on PaddlePaddle. The original article refers to Jingdong Tong He, et, al. "Bag of Tricks for Image Classification with Convolutional Neural Networks" (https://arxiv.org/pdf/1812.01187.pdf). Args: layers (int, optional): The layers of ResNet_vd. The supported layers are (18, 34, 50, 101, 152, 200). Default: 50. output_stride (int, optional): The stride of output features compared to input images. It is 8 or 16. Default: 8. multi_grid (tuple|list, optional): The grid of stage4. Defult: (1, 1, 1). pretrained (str, optional): The path of pretrained model. """ def __init__(self, layers=50, output_stride=8, multi_grid=(1, 1, 1), pretrained=None, data_format='NCHW'): super(ResNet_vd, self).__init__() self.data_format = data_format self.conv1_logit = None # for gscnn shape stream self.layers = layers supported_layers = [18, 34, 50, 101, 152, 200] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format( supported_layers, layers) if layers == 18: depth = [2, 2, 2, 2] elif layers == 34 or layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] elif layers == 200: depth = [3, 12, 48, 3] num_channels = [64, 256, 512, 1024] if layers >= 50 else [64, 64, 128, 256] num_filters = [64, 128, 256, 512] # for channels of four returned stages self.feat_channels = [c * 4 for c in num_filters ] if layers >= 50 else num_filters dilation_dict = None if output_stride == 8: dilation_dict = {2: 2, 3: 4} elif output_stride == 16: dilation_dict = {3: 2} self.conv1_1 = ConvBNLayer( in_channels=3, out_channels=32, kernel_size=3, stride=2, act='relu', data_format=data_format) self.conv1_2 = ConvBNLayer( in_channels=32, out_channels=32, kernel_size=3, stride=1, act='relu', data_format=data_format) self.conv1_3 = ConvBNLayer( in_channels=32, out_channels=64, kernel_size=3, stride=1, act='relu', data_format=data_format) self.pool2d_max = nn.MaxPool2D( kernel_size=3, stride=2, padding=1, data_format=data_format) # self.block_list = [] self.stage_list = [] if layers >= 50: for block in range(len(depth)): shortcut = False block_list = [] for i in range(depth[block]): if layers in [101, 152] and block == 2: if i == 0: conv_name = "res" + str(block + 2) + "a" else: conv_name = "res" + str(block + 2) + "b" + str(i) else: conv_name = "res" + str(block + 2) + chr(97 + i) ############################################################################### # Add dilation rate for some segmentation tasks, if dilation_dict is not None. dilation_rate = dilation_dict[ block] if dilation_dict and block in dilation_dict else 1 # Actually block here is 'stage', and i is 'block' in 'stage' # At the stage 4, expand the the dilation_rate if given multi_grid if block == 3: dilation_rate = dilation_rate * multi_grid[i] ############################################################################### bottleneck_block = self.add_sublayer( 'bb_%d_%d' % (block, i), BottleneckBlock( in_channels=num_channels[block] if i == 0 else num_filters[block] * 4, out_channels=num_filters[block], stride=2 if i == 0 and block != 0 and dilation_rate == 1 else 1, shortcut=shortcut, if_first=block == i == 0, dilation=dilation_rate, data_format=data_format)) block_list.append(bottleneck_block) shortcut = True self.stage_list.append(block_list) else: for block in range(len(depth)): shortcut = False block_list = [] for i in range(depth[block]): dilation_rate = dilation_dict[block] \ if dilation_dict and block in dilation_dict else 1 if block == 3: dilation_rate = dilation_rate * multi_grid[i] basic_block = self.add_sublayer( 'bb_%d_%d' % (block, i), BasicBlock( in_channels=num_channels[block] if i == 0 else num_filters[block], out_channels=num_filters[block], stride=2 if i == 0 and block != 0 \ and dilation_rate == 1 else 1, dilation=dilation_rate, shortcut=shortcut, if_first=block == i == 0, data_format=data_format)) block_list.append(basic_block) shortcut = True self.stage_list.append(block_list) self.pretrained = pretrained self.init_weight() def forward(self, inputs): y = self.conv1_1(inputs) y = self.conv1_2(y) y = self.conv1_3(y) self.conv1_logit = y.clone() y = self.pool2d_max(y) # A feature list saves the output feature map of each stage. feat_list = [] for stage in self.stage_list: for block in stage: y = block(y) feat_list.append(y) return feat_list def init_weight(self): utils.load_pretrained_model(self, self.pretrained) @manager.BACKBONES.add_component def ResNet18_vd(**args): model = ResNet_vd(layers=18, **args) return model def ResNet34_vd(**args): model = ResNet_vd(layers=34, **args) return model @manager.BACKBONES.add_component def ResNet50_vd(**args): model = ResNet_vd(layers=50, **args) return model @manager.BACKBONES.add_component def ResNet101_vd(**args): model = ResNet_vd(layers=101, **args) return model def ResNet152_vd(**args): model = ResNet_vd(layers=152, **args) return model def ResNet200_vd(**args): model = ResNet_vd(layers=200, **args) return model