# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys import cv2 import numpy as np import paddle from paddleseg.cvlibs import manager, Config from paddleseg.utils import get_sys_env, logger LOCAL_PATH = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(LOCAL_PATH, '..')) manager.BACKBONES._components_dict.clear() manager.TRANSFORMS._components_dict.clear() import ppmatting from ppmatting.core import predict from ppmatting.utils import get_image_list, estimate_foreground_ml def parse_args(): parser = argparse.ArgumentParser( description='PP-HumanSeg inference for video') parser.add_argument( "--config", dest="cfg", help="The config file.", default=None, type=str, required=True) parser.add_argument( '--model_path', dest='model_path', help='The path of model for prediction', type=str, default=None) parser.add_argument( '--image_path', dest='image_path', help='Image including human', type=str, default=None) parser.add_argument( '--trimap_path', dest='trimap_path', help='The path of trimap', type=str, default=None) parser.add_argument( '--background', dest='background', help='Background for replacing. It is a string which specifies the background color (r,g,b,w) or a path to background image. If not specified, a green background is used.', type=str, default=None) parser.add_argument( '--save_dir', dest='save_dir', help='The directory for saving the inference results', type=str, default='./output') parser.add_argument( '--fg_estimate', default=True, type=eval, choices=[True, False], help='Whether to estimate foreground when predicting.') return parser.parse_args() def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model transforms = ppmatting.transforms.Compose(cfg.val_transforms) alpha, fg = predict( model, model_path=args.model_path, transforms=transforms, image_list=[args.image_path], trimap_list=[args.trimap_path], save_dir=args.save_dir, fg_estimate=args.fg_estimate) img_ori = cv2.imread(args.image_path) bg = get_bg(args.background, img_ori.shape) alpha = alpha / 255.0 alpha = alpha[:, :, np.newaxis] com = alpha * fg + (1 - alpha) * bg com = com.astype('uint8') com_save_path = os.path.join(args.save_dir, os.path.basename(args.image_path)) cv2.imwrite(com_save_path, com) def get_bg(background, img_shape): bg = np.zeros(img_shape) if background == 'r': bg[:, :, 2] = 255 elif background is None or background == 'g': bg[:, :, 1] = 255 elif background == 'b': bg[:, :, 0] = 255 elif background == 'w': bg[:, :, :] = 255 elif not os.path.exists(background): raise Exception('The --background is not existed: {}'.format( background)) else: bg = cv2.imread(background) bg = cv2.resize(bg, (img_shape[1], img_shape[0])) return bg if __name__ == "__main__": args = parse_args() main(args)