# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import math import paddle import paddle.nn as nn import paddle.nn.functional as F import numpy as np from paddleseg.cvlibs import manager from paddleseg.utils import utils, logger from paddleseg.models.backbones.transformer_utils import to_2tuple, DropPath, Identity class Mlp(nn.Layer): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Layer): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): x_shape = paddle.shape(x) N, C = x_shape[1], x_shape[2] qkv = self.qkv(x).reshape((-1, N, 3, self.num_heads, C // self.num_heads)).transpose((2, 0, 3, 1, 4)) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale attn = nn.functional.softmax(attn, axis=-1) attn = self.attn_drop(attn) x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C)) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Layer): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer='nn.LayerNorm', epsilon=1e-5): super().__init__() self.norm1 = eval(norm_layer)(dim, epsilon=epsilon) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity() self.norm2 = eval(norm_layer)(dim, epsilon=epsilon) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Layer): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() self.img_size = to_2tuple(img_size) self.patch_size = to_2tuple(patch_size) self.proj = nn.Conv2D( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) @property def num_patches_in_h(self): return self.img_size[1] // self.patch_size[1] @property def num_patches_in_w(self): return self.img_size[0] // self.patch_size[0] def forward(self, x): x = self.proj(x) return x @manager.BACKBONES.add_component class VisionTransformer(nn.Layer): """ Vision Transformer with support for patch input """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer='nn.LayerNorm', epsilon=1e-5, final_norm=False, pretrained=None, **args): super().__init__() self.img_size = img_size self.embed_dim = embed_dim self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) self.pos_w = self.patch_embed.num_patches_in_w self.pos_h = self.patch_embed.num_patches_in_h self.pos_embed = self.create_parameter( shape=(1, self.pos_w * self.pos_h + 1, embed_dim), default_initializer=paddle.nn.initializer.TruncatedNormal(std=.02)) self.cls_token = self.create_parameter( shape=(1, 1, embed_dim), default_initializer=paddle.nn.initializer.Constant(value=0.)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = np.linspace(0, drop_path_rate, depth) self.blocks = nn.LayerList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, epsilon=epsilon) for i in range(depth) ]) self.final_norm = final_norm if self.final_norm: self.norm = eval(norm_layer)(embed_dim, epsilon=epsilon) self.pretrained = pretrained self.init_weight() def init_weight(self): utils.load_pretrained_model(self, self.pretrained) # load and resize pos_embed model_path = self.pretrained if not os.path.exists(model_path): model_path = utils.download_pretrained_model(model_path) load_state_dict = paddle.load(model_path) model_state_dict = self.state_dict() pos_embed_name = "pos_embed" if pos_embed_name in load_state_dict.keys(): load_pos_embed = paddle.to_tensor( load_state_dict[pos_embed_name], dtype="float32") if self.pos_embed.shape != load_pos_embed.shape: pos_size = int(math.sqrt(load_pos_embed.shape[1] - 1)) model_state_dict[pos_embed_name] = self.resize_pos_embed( load_pos_embed, (pos_size, pos_size), (self.pos_h, self.pos_w)) self.set_dict(model_state_dict) logger.info("Load pos_embed and resize it from {} to {} .". format(load_pos_embed.shape, self.pos_embed.shape)) def resize_pos_embed(self, pos_embed, old_hw, new_hw): """ Resize pos_embed weight. Args: pos_embed (Tensor): the pos_embed weight old_hw (list[int]): the height and width of old pos_embed new_hw (list[int]): the height and width of new pos_embed Returns: Tensor: the resized pos_embed weight """ cls_pos_embed = pos_embed[:, :1, :] pos_embed = pos_embed[:, 1:, :] pos_embed = pos_embed.transpose([0, 2, 1]) pos_embed = pos_embed.reshape([1, -1, old_hw[0], old_hw[1]]) pos_embed = F.interpolate( pos_embed, new_hw, mode='bicubic', align_corners=False) pos_embed = pos_embed.flatten(2).transpose([0, 2, 1]) pos_embed = paddle.concat([cls_pos_embed, pos_embed], axis=1) return pos_embed def forward(self, x): x = self.patch_embed(x) x_shape = paddle.shape(x) # b * c * h * w cls_tokens = self.cls_token.expand((x_shape[0], -1, -1)) x = x.flatten(2).transpose([0, 2, 1]) # b * hw * c x = paddle.concat([cls_tokens, x], axis=1) if paddle.shape(x)[1] == self.pos_embed.shape[1]: x = x + self.pos_embed else: x = x + self.resize_pos_embed(self.pos_embed, (self.pos_h, self.pos_w), x_shape[2:]) x = self.pos_drop(x) res = [] for idx, blk in enumerate(self.blocks): x = blk(x) if self.final_norm and idx == len(self.blocks) - 1: x = self.norm(x) res.append(x[:, 1:, :]) return res, x_shape @manager.BACKBONES.add_component def ViT_small_patch16_224(**kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, qk_scale=768**-0.5, **kwargs) return model @manager.BACKBONES.add_component def ViT_base_patch16_224(**kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, epsilon=1e-6, **kwargs) return model @manager.BACKBONES.add_component def ViT_base_patch16_384(**kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, epsilon=1e-6, **kwargs) return model @manager.BACKBONES.add_component def ViT_base_patch32_384(**kwargs): model = VisionTransformer( img_size=384, patch_size=32, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, epsilon=1e-6, **kwargs) return model @manager.BACKBONES.add_component def ViT_large_patch16_224(**kwargs): model = VisionTransformer( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, epsilon=1e-6, **kwargs) return model @manager.BACKBONES.add_component def ViT_large_patch16_384(**kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, epsilon=1e-6, **kwargs) return model @manager.BACKBONES.add_component def ViT_large_patch32_384(**kwargs): model = VisionTransformer( img_size=384, patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, epsilon=1e-6, **kwargs) return model @manager.BACKBONES.add_component def ViT_huge_patch16_224(**kwargs): model = VisionTransformer( patch_size=16, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, **kwargs) return model @manager.BACKBONES.add_component def ViT_huge_patch32_384(**kwargs): model = VisionTransformer( img_size=384, patch_size=32, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, **kwargs) return model