# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle import paddle.nn as nn import paddle.nn.functional as F from paddleseg import utils from paddleseg.cvlibs import manager, param_init from paddleseg.models import layers @manager.MODELS.add_component class BiSeNetV2(nn.Layer): """ The BiSeNet V2 implementation based on PaddlePaddle. The original article refers to Yu, Changqian, et al. "BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation" (https://arxiv.org/abs/2004.02147) Args: num_classes (int): The unique number of target classes. lambd (float, optional): A factor for controlling the size of semantic branch channels. Default: 0.25. pretrained (str, optional): The path or url of pretrained model. Default: None. """ def __init__(self, num_classes, lambd=0.25, align_corners=False, pretrained=None): super().__init__() C1, C2, C3 = 64, 64, 128 db_channels = (C1, C2, C3) C1, C3, C4, C5 = int(C1 * lambd), int(C3 * lambd), 64, 128 sb_channels = (C1, C3, C4, C5) mid_channels = 128 self.db = DetailBranch(db_channels) self.sb = SemanticBranch(sb_channels) self.bga = BGA(mid_channels, align_corners) self.aux_head1 = SegHead(C1, C1, num_classes) self.aux_head2 = SegHead(C3, C3, num_classes) self.aux_head3 = SegHead(C4, C4, num_classes) self.aux_head4 = SegHead(C5, C5, num_classes) self.head = SegHead(mid_channels, mid_channels, num_classes) self.align_corners = align_corners self.pretrained = pretrained self.init_weight() def forward(self, x): dfm = self.db(x) feat1, feat2, feat3, feat4, sfm = self.sb(x) logit = self.head(self.bga(dfm, sfm)) if not self.training: logit_list = [logit] else: logit1 = self.aux_head1(feat1) logit2 = self.aux_head2(feat2) logit3 = self.aux_head3(feat3) logit4 = self.aux_head4(feat4) logit_list = [logit, logit1, logit2, logit3, logit4] logit_list = [ F.interpolate( logit, paddle.shape(x)[2:], mode='bilinear', align_corners=self.align_corners) for logit in logit_list ] return logit_list def init_weight(self): if self.pretrained is not None: utils.load_entire_model(self, self.pretrained) else: for sublayer in self.sublayers(): if isinstance(sublayer, nn.Conv2D): param_init.kaiming_normal_init(sublayer.weight) elif isinstance(sublayer, (nn.BatchNorm, nn.SyncBatchNorm)): param_init.constant_init(sublayer.weight, value=1.0) param_init.constant_init(sublayer.bias, value=0.0) class StemBlock(nn.Layer): def __init__(self, in_dim, out_dim): super(StemBlock, self).__init__() self.conv = layers.ConvBNReLU(in_dim, out_dim, 3, stride=2) self.left = nn.Sequential( layers.ConvBNReLU(out_dim, out_dim // 2, 1), layers.ConvBNReLU( out_dim // 2, out_dim, 3, stride=2)) self.right = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) self.fuse = layers.ConvBNReLU(out_dim * 2, out_dim, 3) def forward(self, x): x = self.conv(x) left = self.left(x) right = self.right(x) concat = paddle.concat([left, right], axis=1) return self.fuse(concat) class ContextEmbeddingBlock(nn.Layer): def __init__(self, in_dim, out_dim): super(ContextEmbeddingBlock, self).__init__() self.gap = nn.AdaptiveAvgPool2D(1) self.bn = layers.SyncBatchNorm(in_dim) self.conv_1x1 = layers.ConvBNReLU(in_dim, out_dim, 1) self.add = layers.Add() self.conv_3x3 = nn.Conv2D(out_dim, out_dim, 3, 1, 1) def forward(self, x): gap = self.gap(x) bn = self.bn(gap) conv1 = self.add(self.conv_1x1(bn), x) return self.conv_3x3(conv1) class GatherAndExpansionLayer1(nn.Layer): """Gather And Expansion Layer with stride 1""" def __init__(self, in_dim, out_dim, expand): super().__init__() expand_dim = expand * in_dim self.conv = nn.Sequential( layers.ConvBNReLU(in_dim, in_dim, 3), layers.DepthwiseConvBN(in_dim, expand_dim, 3), layers.ConvBN(expand_dim, out_dim, 1)) self.relu = layers.Activation("relu") def forward(self, x): return self.relu(self.conv(x) + x) class GatherAndExpansionLayer2(nn.Layer): """Gather And Expansion Layer with stride 2""" def __init__(self, in_dim, out_dim, expand): super().__init__() expand_dim = expand * in_dim self.branch_1 = nn.Sequential( layers.ConvBNReLU(in_dim, in_dim, 3), layers.DepthwiseConvBN( in_dim, expand_dim, 3, stride=2), layers.DepthwiseConvBN(expand_dim, expand_dim, 3), layers.ConvBN(expand_dim, out_dim, 1)) self.branch_2 = nn.Sequential( layers.DepthwiseConvBN( in_dim, in_dim, 3, stride=2), layers.ConvBN(in_dim, out_dim, 1)) self.relu = layers.Activation("relu") def forward(self, x): return self.relu(self.branch_1(x) + self.branch_2(x)) class DetailBranch(nn.Layer): """The detail branch of BiSeNet, which has wide channels but shallow layers.""" def __init__(self, in_channels): super().__init__() C1, C2, C3 = in_channels self.convs = nn.Sequential( # stage 1 layers.ConvBNReLU( 3, C1, 3, stride=2), layers.ConvBNReLU(C1, C1, 3), # stage 2 layers.ConvBNReLU( C1, C2, 3, stride=2), layers.ConvBNReLU(C2, C2, 3), layers.ConvBNReLU(C2, C2, 3), # stage 3 layers.ConvBNReLU( C2, C3, 3, stride=2), layers.ConvBNReLU(C3, C3, 3), layers.ConvBNReLU(C3, C3, 3), ) def forward(self, x): return self.convs(x) class SemanticBranch(nn.Layer): """The semantic branch of BiSeNet, which has narrow channels but deep layers.""" def __init__(self, in_channels): super().__init__() C1, C3, C4, C5 = in_channels self.stem = StemBlock(3, C1) self.stage3 = nn.Sequential( GatherAndExpansionLayer2(C1, C3, 6), GatherAndExpansionLayer1(C3, C3, 6)) self.stage4 = nn.Sequential( GatherAndExpansionLayer2(C3, C4, 6), GatherAndExpansionLayer1(C4, C4, 6)) self.stage5_4 = nn.Sequential( GatherAndExpansionLayer2(C4, C5, 6), GatherAndExpansionLayer1(C5, C5, 6), GatherAndExpansionLayer1(C5, C5, 6), GatherAndExpansionLayer1(C5, C5, 6)) self.ce = ContextEmbeddingBlock(C5, C5) def forward(self, x): stage2 = self.stem(x) stage3 = self.stage3(stage2) stage4 = self.stage4(stage3) stage5_4 = self.stage5_4(stage4) fm = self.ce(stage5_4) return stage2, stage3, stage4, stage5_4, fm class BGA(nn.Layer): """The Bilateral Guided Aggregation Layer, used to fuse the semantic features and spatial features.""" def __init__(self, out_dim, align_corners): super().__init__() self.align_corners = align_corners self.db_branch_keep = nn.Sequential( layers.DepthwiseConvBN(out_dim, out_dim, 3), nn.Conv2D(out_dim, out_dim, 1)) self.db_branch_down = nn.Sequential( layers.ConvBN( out_dim, out_dim, 3, stride=2), nn.AvgPool2D( kernel_size=3, stride=2, padding=1)) self.sb_branch_keep = nn.Sequential( layers.DepthwiseConvBN(out_dim, out_dim, 3), nn.Conv2D(out_dim, out_dim, 1), layers.Activation(act='sigmoid')) self.sb_branch_up = layers.ConvBN(out_dim, out_dim, 3) self.conv = layers.ConvBN(out_dim, out_dim, 3) def forward(self, dfm, sfm): db_feat_keep = self.db_branch_keep(dfm) db_feat_down = self.db_branch_down(dfm) sb_feat_keep = self.sb_branch_keep(sfm) sb_feat_up = self.sb_branch_up(sfm) sb_feat_up = F.interpolate( sb_feat_up, paddle.shape(db_feat_keep)[2:], mode='bilinear', align_corners=self.align_corners) sb_feat_up = F.sigmoid(sb_feat_up) db_feat = db_feat_keep * sb_feat_up sb_feat = db_feat_down * sb_feat_keep sb_feat = F.interpolate( sb_feat, paddle.shape(db_feat)[2:], mode='bilinear', align_corners=self.align_corners) return self.conv(db_feat + sb_feat) class SegHead(nn.Layer): def __init__(self, in_dim, mid_dim, num_classes): super().__init__() self.conv_3x3 = nn.Sequential( layers.ConvBNReLU(in_dim, mid_dim, 3), nn.Dropout(0.1)) self.conv_1x1 = nn.Conv2D(mid_dim, num_classes, 1, 1) def forward(self, x): conv1 = self.conv_3x3(x) conv2 = self.conv_1x1(conv1) return conv2