# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np from PIL import Image, ImageEnhance from scipy.ndimage import distance_transform_edt def normalize(im, mean, std): im = im.astype(np.float32, copy=False) / 255.0 im -= mean im /= std return im def resize(im, target_size=608, interp=cv2.INTER_LINEAR): if isinstance(target_size, list) or isinstance(target_size, tuple): w = target_size[0] h = target_size[1] else: w = target_size h = target_size im = cv2.resize(im, (w, h), interpolation=interp) return im def resize_long(im, long_size=224, interpolation=cv2.INTER_LINEAR): value = max(im.shape[0], im.shape[1]) scale = float(long_size) / float(value) resized_width = int(round(im.shape[1] * scale)) resized_height = int(round(im.shape[0] * scale)) im = cv2.resize( im, (resized_width, resized_height), interpolation=interpolation) return im def resize_short(im, short_size=224, interpolation=cv2.INTER_LINEAR): value = min(im.shape[0], im.shape[1]) scale = float(short_size) / float(value) resized_width = int(round(im.shape[1] * scale)) resized_height = int(round(im.shape[0] * scale)) im = cv2.resize( im, (resized_width, resized_height), interpolation=interpolation) return im def horizontal_flip(im): if len(im.shape) == 3: im = im[:, ::-1, :] elif len(im.shape) == 2: im = im[:, ::-1] return im def vertical_flip(im): if len(im.shape) == 3: im = im[::-1, :, :] elif len(im.shape) == 2: im = im[::-1, :] return im def brightness(im, brightness_lower, brightness_upper): brightness_delta = np.random.uniform(brightness_lower, brightness_upper) im = ImageEnhance.Brightness(im).enhance(brightness_delta) return im def contrast(im, contrast_lower, contrast_upper): contrast_delta = np.random.uniform(contrast_lower, contrast_upper) im = ImageEnhance.Contrast(im).enhance(contrast_delta) return im def saturation(im, saturation_lower, saturation_upper): saturation_delta = np.random.uniform(saturation_lower, saturation_upper) im = ImageEnhance.Color(im).enhance(saturation_delta) return im def hue(im, hue_lower, hue_upper): hue_delta = np.random.uniform(hue_lower, hue_upper) im = np.array(im.convert('HSV')) im[:, :, 0] = im[:, :, 0] + hue_delta im = Image.fromarray(im, mode='HSV').convert('RGB') return im def sharpness(im, sharpness_lower, sharpness_upper): sharpness_delta = np.random.uniform(sharpness_lower, sharpness_upper) im = ImageEnhance.Sharpness(im).enhance(sharpness_delta) return im def rotate(im, rotate_lower, rotate_upper): rotate_delta = np.random.uniform(rotate_lower, rotate_upper) im = im.rotate(int(rotate_delta)) return im def mask_to_onehot(mask, num_classes): """ Convert a mask (H, W) to onehot (K, H, W). Args: mask (np.ndarray): Label mask with shape (H, W) num_classes (int): Number of classes. Returns: np.ndarray: Onehot mask with shape(K, H, W). """ _mask = [mask == i for i in range(num_classes)] _mask = np.array(_mask).astype(np.uint8) return _mask def onehot_to_binary_edge(mask, radius): """ Convert a onehot mask (K, H, W) to a edge mask. Args: mask (np.ndarray): Onehot mask with shape (K, H, W) radius (int|float): Radius of edge. Returns: np.ndarray: Edge mask with shape(H, W). """ if radius < 1: raise ValueError('`radius` should be greater than or equal to 1') num_classes = mask.shape[0] edge = np.zeros(mask.shape[1:]) # pad borders mask = np.pad(mask, ((0, 0), (1, 1), (1, 1)), mode='constant', constant_values=0) for i in range(num_classes): dist = distance_transform_edt(mask[i, :]) + distance_transform_edt( 1.0 - mask[i, :]) dist = dist[1:-1, 1:-1] dist[dist > radius] = 0 edge += dist edge = np.expand_dims(edge, axis=0) edge = (edge > 0).astype(np.uint8) return edge def mask_to_binary_edge(mask, radius, num_classes): """ Convert a segmentic segmentation mask (H, W) to a binary edge mask(H, W). Args: mask (np.ndarray): Label mask with shape (H, W) radius (int|float): Radius of edge. num_classes (int): Number of classes. Returns: np.ndarray: Edge mask with shape(H, W). """ mask = mask.squeeze() onehot = mask_to_onehot(mask, num_classes) edge = onehot_to_binary_edge(onehot, radius) return edge