sd-web / index.html
silait's picture
Update index.html
3628920 verified
<!DOCTYPE html>
<html>
<head>
<title>WebSD | Home</title>
<meta charset="utf-8" />
<meta
name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no"
/>
<link
rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta.2/css/bootstrap.min.css"
integrity="sha384-PsH8R72JQ3SOdhVi3uxftmaW6Vc51MKb0q5P2rRUpPvrszuE4W1povHYgTpBfshb"
crossorigin="anonymous"
/>
<link
rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css"
/>
<link rel="stylesheet" href="/assets/css/main.css" />
<link rel="stylesheet" href="/assets/css/group.css" />
<!-- <link rel="stylesheet" href="/css/table.css"> -->
<!-- <link rel="shortcut icon" href="/assets/img/logo/mlc-favicon.png" /> -->
<meta
http-equiv="origin-trial"
content="Agx76XA0ITxMPF0Z8rbbcMllwuxsyp9qdtQaXlLqu1JUrdHB6FPonuyIKJ3CsBREUkeioJck4nn3KO0c0kkwqAMAAABJeyJvcmlnaW4iOiJodHRwOi8vbG9jYWxob3N0Ojg4ODgiLCJmZWF0dXJlIjoiV2ViR1BVIiwiZXhwaXJ5IjoxNjkxNzExOTk5fQ=="
/>
<meta
http-equiv="origin-trial"
content="AnmwqQ1dtYDQTYkZ5iMtHdINCaxjE94uWQBKp2yOz1wPTcjSRtOHUGQG+r2BxsEuM0qhxTVnuTjyh31HgTeA8gsAAABZeyJvcmlnaW4iOiJodHRwczovL21sYy5haTo0NDMiLCJmZWF0dXJlIjoiV2ViR1BVIiwiZXhwaXJ5IjoxNjkxNzExOTk5LCJpc1N1YmRvbWFpbiI6dHJ1ZX0="
/>
<script src="dist/tvmjs_runtime.wasi.js"></script>
<script src="dist/tvmjs.bundle.js"></script>
</head>
<body>
<div class="container">
<!-- This is a bit nasty, but it basically says be a column first, and on larger screens be a spaced out row -->
<div
class="header d-flex flex-column flex-md-row justify-content-md-between"
>
<a href="/" id="navtitle">
<img
src="/assets/img/logo/mlc-logo-with-text-landscape.svg"
height="70px"
alt="MLC"
id="logo"
/>
</a>
<ul id="topbar" class="nav nav-pills justify-content-center">
<li class="nav-item">
<a class="nav-link active" href="/"> Home </a>
</li>
<li class="nav-item">
<a
class="nav-link"
href="https://github.com/mlc-ai/web-stable-diffusion"
>
Github
</a>
</li>
</ul>
</div>
<!-- Schedule -->
<h1 id="web-stable-diffusion">Web Stable Diffusion </h1>
<p>
This project brings stable diffusion models to web browsers.
<strong>Everything runs inside the browser with no need of server
support.</strong>
To our knowledge, this is the the world’s first stable diffusion
completely running on the browser. Please check out our
<a href="https://github.com/mlc-ai/web-stable-diffusion">GitHub repo</a>
to see how we did it. There is also a
<a href="#text-to-image-generation-demo">demo</a> which you can try out.
</p>
<li>
WebGPU spec does comes with FP16 support already, but the
implementation does not yet support this feature at this moment. As a
result, the memory consumption of running the demo is about 7GB. For
Apple silicon Mac with only 8GB of unified memory, it may take longer
(a few minutes) to generate an image. This demo may also work for Mac
with AMD GPU.
</li>
<h3 id="demo">Demo</h3>
<script>
var tvmjsGlobalEnv = tvmjsGlobalEnv || {};
</script>
<script type="module">
import init, {
TokenizerWasm,
} from "./dist/tokenizers-wasm/tokenizers_wasm.js";
var initialized = false;
async function getTokenizer(name) {
if (!initialized) {
await init();
}
const jsonText = await (
await fetch(
"https://huggingface.co/" + name + "/raw/main/tokenizer.json"
)
).text();
return new TokenizerWasm(jsonText);
}
tvmjsGlobalEnv.getTokenizer = getTokenizer;
</script>
<div>
Select Model: <select name="model" id="modelId">
<option selected="selected">Stable-Diffusion-1.5</option>
<option disabled>Stable-Diffusion-XL</option>
</select>
</div>
<script src="dist/stable_diffusion.js"></script>
<div>
Input prompt:
<input
name="inputPrompt"
id="inputPrompt"
type="text"
value="A photo of an astronaut riding a horse on mars"
size="77"
/>
<br />
Negative prompt (optional):
<input
name="negativePrompt"
id="negativePrompt"
type="text"
value=""
size="77"
/>
</div>
<div>
Select scheduler -
<select name="scheduler" id="schedulerId">
<option value="0">Multi-step DPM Solver (20 steps)</option>
<option value="1">PNDM (50 steps)</option>
</select>
<br />
Render intermediate steps (may slow down execution) -
<select name="vae-cycle" id="vaeCycle">
<option value="-1">No</option>
<option value="2">Run VAE every two UNet steps after step 10</option>
</select>
<div id="progress">
<label id="gpu-tracker-label"></label><br />
<label id="progress-tracker-label"></label><br />
<progress
id="progress-tracker-progress"
max="100"
value="100"
></progress>
</div>
<button onclick="tvmjsGlobalEnv.asyncOnGenerate()">Generate</button>
</div>
<script>
function updateSchedulerBasedOnModel() {
var selectedModel = document.getElementById('modelId').value;
var schedulerDropdown = document.getElementById('schedulerId');
if (selectedModel === 'Stable-Diffusion-XL') {
schedulerDropdown.value = '2'; // Set to Multi-step DPM Solver
// Optionally, disable other options
for (var i = 0; i < schedulerDropdown.options.length; i++) {
schedulerDropdown.options[i].disabled = (schedulerDropdown.options[i].value !== '2');
}
} else {
schedulerDropdown.value = '0'; // Set to Multi-step DPM Solver
// Optionally, disable other options
for (var i = 0; i < schedulerDropdown.options.length; i++) {
schedulerDropdown.options[i].disabled = (schedulerDropdown.options[i].value !== '0' && schedulerDropdown.options[i].value !== '1');
}
}
}
window.onload = function() {
updateSchedulerBasedOnModel(); // Run when page loads
document.getElementById('modelId').addEventListener('change', updateSchedulerBasedOnModel); // Also run on model change
}
</script>
<div>
<canvas id="canvas" width="512" height="512"></canvas>
</div>
<div id="log"></div>
<p>
This project brings stable diffusion models to web browsers.
<strong
>Everything runs inside the browser with no need of server
support.</strong
>
To our knowledge, this is the the world’s first stable diffusion
completely running on the browser. Please check out our
<a href="https://github.com/mlc-ai/web-stable-diffusion">GitHub repo</a>
to see how we did it. There is also a
<a href="#text-to-image-generation-demo">demo</a> which you can try out.
</p>
<p>
<img
src="img/fig/browser-screenshot.png"
alt="Browser screenshot"
width="100%"
/>
</p>
<p>
We have been seeing amazing progress through AI models recently. Thanks
to the open-source effort, developers can now easily compose open-source
models together to produce amazing tasks. Stable diffusion enables the
automatic creation of photorealistic images as well as images in various
styles based on text input. These models are usually big and
compute-heavy, which means we have to pipe through all computation
requests to (GPU) servers when developing web applications based on
these models. Additionally, most of the workloads have to run on a
specific type of GPUs where popular deep-learning frameworks are readily
available.
</p>
<p>
This project takes a step to change that status quo and bring more
diversity to the ecosystem. There are a lot of reasons to get some (or
all) of the computation to the client side. There are many possible
benefits, such as cost reduction on the service provider side, as well
as an enhancement for personalization and privacy protection. The
development of personal computers (even mobile devices) is going in the
direction that enables such possibilities. The client side is getting
pretty powerful. For example, the latest MacBook Pro can have up to 96GB
of unified RAM that can be used to store the model weights and a
reasonably powerful GPU to run many of the workloads.
</p>
<p>
Wouldn’t it be fun to directly bring the ML models to the client, have
the user open a browser tab, and instantly run the stable diffusion
models on the browser? This project provides the first affirmative
answer to this question.
</p>
<h2 id="text-to-image-generation-demo">Text to Image Generation Demo</h2>
<p>
Because WebGPU is not yet fully stable, nor have there ever been such
large-scale AI models running on top of WebGPU, so we are testing the
limit here. It may not work in your environment. So far, we have only
tested it on Mac with M1/M2 GPUs in Chrome Canary (a nightly build of
Chrome) because WebGPU is quite new. We have tested on Windows and it
does not work at this moment due to possible driver issues. We
anticipate the support broadens as WebGPU matures. Please check out the
<a href="#instructions">use instructions</a> and
<a href="#notes">notes</a> below.
</p>
<h3 id="instructions">Instructions</h3>
<p>
If you have a Mac computer with Apple silicon, here are the instructions
for you to run stable diffusion on your browser locally:
</p>
<ul>
<li>
Install
<a href="https://www.google.com/chrome/canary/">Chrome Canary</a>, a
developer version of Chrome that enables the use of WebGPU.
</li>
<li>
Launch Chrome Canary.
<strong
>You are recommended to launch from terminal with the following
command:</strong
>
<div class="language-shell highlighter-rouge">
<div class="highlight">
<pre
class="highlight"
><code>/Applications/Google<span class="se">\ </span>Chrome<span class="se">\ </span>Canary.app/Contents/MacOS/Google<span class="se">\ </span>Chrome<span class="se">\ </span>Canary <span class="nt">--enable-dawn-features</span><span class="o">=</span>disable_robustness
</code></pre>
</div>
</div>
<p>
This command turns off the robustness check from Chrome Canary that
slows down image generation to times. It is not necessary, but we
strongly recommend you to start Chrome with this command.
</p>
</li>
<li>
Enter your prompt, click “Generate” – we are ready to go! The image
generation will start after downloading and fetching the model
parameters to local cache. The download may take a few minutes, only
for the first run. The subsequent refreshes and runs will be faster.
</li>
<li>
Feel free to enter different prompts as well as negative prompts to
generate the image you want.
</li>
<li>
We provide an option to render images for the intermediate steps of
UNet stage. Select “Run VAE every two UNet steps after step 10” for
“Render intermediate steps” and click “Generate” again, and you will
see how an image gets generated along the process.
</li>
</ul>
<h3 id="notes">Notes</h3>
<ul>
<li>
Please check out our
<a href="https://github.com/mlc-ai/web-stable-diffusion"
>GitHub repo</a
>
for running the same shader flow locally on your GPU device through
the native driver. Right now, there are still gaps (e.g., without
launching Chrome from command line, Chrome’s WebGPU implementation
inserts bound clips for all array index access, such that
<code class="language-plaintext highlighter-rouge">a[i]</code> becomes
<code class="language-plaintext highlighter-rouge"
>a[min(i, a.size)]</code
>, which are not optimized out by the downstream shader compilers),
but we believe it is feasible to close such gaps as WebGPU dispatches
to these native drivers.
</li>
</ul>
<h2 id="disclaimer">Disclaimer</h2>
<p>
This demo site is for research purposes only. Please conform to the
<a href="https://huggingface.co/runwayml/stable-diffusion-v1-5#uses"
>uses of stable diffusion models</a
>.
</p>
</div>
<!-- /container -->
<!-- Support retina images. -->
<script type="text/javascript" src="/assets/js/srcset-polyfill.js"></script>
</body>
</html>