Rubanza Silver commited on
Commit
15f6601
·
1 Parent(s): ad65079

Add application files

Browse files
Files changed (6) hide show
  1. antelopeA.jpeg +0 -0
  2. antelopeB.jpeg +0 -0
  3. antelopeC.jpeg +0 -0
  4. antelopeClassifier.pkl +3 -0
  5. app.py +47 -0
  6. requirements.txt +4 -0
antelopeA.jpeg ADDED
antelopeB.jpeg ADDED
antelopeC.jpeg ADDED
antelopeClassifier.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fc1f1326b6f9e729437e175d734b6477608c474f58ccab16837c12436c472fa
3
+ size 47372647
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AUTOGENERATED! DO NOT EDIT! File to edit: antelopeInference.ipynb.
2
+
3
+ # %% auto 0
4
+ __all__ = ['learn', 'image', 'label', 'examples', 'intf', 'classify_image']
5
+
6
+ # %% antelopeInference.ipynb 3
7
+ #Imports
8
+
9
+ import numpy as np # linear algebra
10
+ import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
11
+
12
+ #hide
13
+ #[ -e /content ]
14
+ #pip install -Uqq fastbook
15
+
16
+ # import fastbook
17
+ # fastbook.setup_book()
18
+
19
+ #hide
20
+ # from fastbook import *
21
+ # from fastai.vision.widgets import *
22
+
23
+ # pip install fastai
24
+
25
+
26
+ # %% antelopeInference.ipynb 4
27
+ from fastai.vision.all import *
28
+ import gradio as gr
29
+
30
+ # %% antelopeInference.ipynb 8
31
+ learn = load_learner('antelopeClassifier.pkl')
32
+
33
+ categories = ('Eland', 'Greater Kudu', 'Hartebeest', 'Oryx', 'Defassa Waterbuck', 'Sitatunga', 'Impala ', 'The lesser Kudu', 'Grant’s Gazelle','Reedbuck','Uganda Kob','Forest duiker','Harvery’s red duiker', 'Blue duiker', 'Peter’s duiker','Black fronted duiker','Grey duiker','Oribi','Klipspringer','Guenther’s')
34
+
35
+ # %% antelopeInference.ipynb 26
36
+ def classify_image(img):
37
+ pred,idx,probs = learn.predict(img)
38
+ return dict(zip(categories, map(float,probs)))
39
+
40
+ # %% antelopeInference.ipynb 31
41
+ #create gradio interface
42
+ image = gr.inputs.Image(shape=(128,128))
43
+ label = gr.outputs.Label()
44
+ examples = ['antelopeA.jpeg', 'antelopeB.jpeg', 'antelopeC.jpeg']
45
+
46
+ intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples )
47
+ intf.launch(inline=False)
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch
2
+ fastai
3
+ numpy
4
+ pandas