# AUTOGENERATED! DO NOT EDIT! File to edit: antelopeInference.ipynb. # %% auto 0 __all__ = ['learn', 'image', 'label', 'examples', 'intf', 'classify_image'] # %% antelopeInference.ipynb 3 #Imports import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) #hide #[ -e /content ] #pip install -Uqq fastbook # import fastbook # fastbook.setup_book() #hide # from fastbook import * # from fastai.vision.widgets import * # pip install fastai # %% antelopeInference.ipynb 4 from fastai.vision.all import * import gradio as gr # %% antelopeInference.ipynb 8 learn = load_learner('antelopeClassifier.pkl') categories = ('Eland', 'Greater Kudu', 'Hartebeest', 'Oryx', 'Defassa Waterbuck', 'Sitatunga', 'Impala ', 'The lesser Kudu', 'Grant’s Gazelle','Reedbuck','Uganda Kob','Forest duiker','Harvery’s red duiker', 'Blue duiker', 'Peter’s duiker','Black fronted duiker','Grey duiker','Oribi','Klipspringer','Guenther’s') # %% antelopeInference.ipynb 26 def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) # %% antelopeInference.ipynb 31 #create gradio interface image = gr.inputs.Image(shape=(128,128)) label = gr.outputs.Label() examples = ['antelopeA.jpeg', 'antelopeB.jpeg', 'antelopeC.jpeg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples ) intf.launch(inline=False)