File size: 1,280 Bytes
390106f
 
 
 
 
 
 
 
 
 
 
 
c8a509a
 
390106f
c8a509a
 
390106f
 
c8a509a
 
390106f
c8a509a
390106f
 
d64d3fb
390106f
 
 
dfc98ea
390106f
e729418
 
390106f
 
 
 
 
 
 
 
 
807920b
390106f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# AUTOGENERATED! DO NOT EDIT! File to edit: ../fastai_lesson_2_bearsInference_colab.ipynb.

# %% auto 0
__all__ = ['learn', 'image', 'label', 'examples', 'intf', 'classify_image']

# %% ../fastai_lesson_2_bearsInference_colab.ipynb 1
#Imports

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

#hide
#[ -e /content ] 
#pip install -Uqq fastbook

# import fastbook
# fastbook.setup_book()

#hide
# from fastbook import *
# from fastai.vision.widgets import *

# pip install fastai

# %% ../fastai_lesson_2_bearsInference_colab.ipynb 3
from fastai.vision.all import *
import gradio as gr

# %% ../fastai_lesson_2_bearsInference_colab.ipynb 12
learn = load_learner('bearClassifier.pkl')

categories = ('grizzly', 'black', 'teddy')

# %% ../fastai_lesson_2_bearsInference_colab.ipynb 15
def classify_image(img):
  pred,idx,probs = learn.predict(img)
  return dict(zip(categories, map(float,probs)))

# %% ../fastai_lesson_2_bearsInference_colab.ipynb 18
#create gradio interface
image = gr.inputs.Image(shape=(128,128))
label = gr.outputs.Label()
examples = ['grizzlyA.jpg', 'blackBearA.jpg', 'teddyBearA.jpg']

intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples )
intf.launch(inline=False)