silvaKenpachi commited on
Commit
8be3cb5
·
verified ·
1 Parent(s): 9e4102b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -10,6 +10,10 @@ pipe = joblib.load("./model.pkl")
10
  title = "Premium Amount Prediction"
11
  description = "This model predicts the Premium Amount. Drag and drop any slice from the dataset or edit values as you wish in the dataframe component below."
12
 
 
 
 
 
13
  # Load configuration
14
  with open("./config.json") as f:
15
  config_dict = json.load(f)
@@ -18,11 +22,6 @@ all_headers = config_dict["sklearn"]["columns"]
18
  # Filter headers to only include those present in the dataset
19
  headers = [col for col in all_headers if col in df.columns]
20
 
21
-
22
- # Load and prepare dataset
23
- df = datasets.load_dataset("silvaKenpachi/mental_health")["train"].to_pandas()
24
- df.dropna(axis=0, inplace=True)
25
-
26
  # Define input and output interfaces
27
  inputs = [gr.Dataframe(headers=headers, row_count=(2, "dynamic"), col_count=(len(headers), "fixed"), label="Input Data", interactive=True)]
28
  outputs = [gr.Dataframe(row_count=(2, "dynamic"), col_count=(1, "fixed"), label="Predictions", headers=["Depression"])]
 
10
  title = "Premium Amount Prediction"
11
  description = "This model predicts the Premium Amount. Drag and drop any slice from the dataset or edit values as you wish in the dataframe component below."
12
 
13
+ # Load and prepare dataset
14
+ df = datasets.load_dataset("silvaKenpachi/mental_health")["train"].to_pandas()
15
+ df.dropna(axis=0, inplace=True)
16
+
17
  # Load configuration
18
  with open("./config.json") as f:
19
  config_dict = json.load(f)
 
22
  # Filter headers to only include those present in the dataset
23
  headers = [col for col in all_headers if col in df.columns]
24
 
 
 
 
 
 
25
  # Define input and output interfaces
26
  inputs = [gr.Dataframe(headers=headers, row_count=(2, "dynamic"), col_count=(len(headers), "fixed"), label="Input Data", interactive=True)]
27
  outputs = [gr.Dataframe(row_count=(2, "dynamic"), col_count=(1, "fixed"), label="Predictions", headers=["Depression"])]