silvaKenpachi commited on
Commit
b6c250a
·
verified ·
1 Parent(s): fd6168c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -3
app.py CHANGED
@@ -1,6 +1,35 @@
 
1
  import gradio as gr
 
 
 
2
 
3
- title = "Breast Cancer Prediction"
4
- description = "This app predicts breast cancer based on digitized images of a fine needle aspirate (FNA) of a breast mass."
5
 
6
- gr.Interface.load("huggingface/scikit-learn/skops-blog-example", title=title, description=description).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sklearn
2
  import gradio as gr
3
+ import joblib
4
+ import pandas as pd
5
+ import datasets
6
 
7
+ pipe = joblib.load("./model.pkl")
 
8
 
9
+ title = "Depression Prediction"
10
+ description = "This model predicts depression risk. Drag and drop any slice from dataset or edit values as you wish in below dataframe component."
11
+
12
+
13
+ with open("./config.json") as f:
14
+ config_dict = eval(f.read())
15
+ headers = config_dict["sklearn"]["columns"]
16
+
17
+ df = datasets.load_dataset("silvaKenpachi/mental_health")
18
+ df = df["train"].to_pandas()
19
+ df.dropna(axis=0, inplace=True)
20
+
21
+ feature_columns = [col for col in df.columns if col != 'Premium Amount']
22
+
23
+
24
+
25
+ inputs = [gr.Dataframe(headers = headers, row_count = (2, "dynamic"), col_count=(len(headers), "dynamic"), label="Input Data", interactive=1)]
26
+ outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Predictions", headers=["Premium Amount"])]
27
+
28
+
29
+ def infer(inputs):
30
+ data = pd.DataFrame(inputs, columns=headers)
31
+ predictions = pipe.predict(inputs)
32
+ return pd.DataFrame(predictions, columns=["results"])
33
+
34
+ gr.Interface(infer, inputs = inputs, outputs = outputs, title = title,
35
+ description = description, examples=[df.head(3)], cache_examples=False).launch(debug=True)