File size: 24,546 Bytes
4a3f787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486fd8a
4a3f787
 
486fd8a
4a3f787
 
 
 
 
 
 
 
 
 
 
 
 
486fd8a
 
4a3f787
 
 
 
 
 
 
 
 
 
 
 
 
486fd8a
 
4a3f787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import copy
import os
import warnings

import numpy as np
import scipy.spatial as spa
import torch
from Bio.PDB import PDBParser
from Bio.PDB.PDBExceptions import PDBConstructionWarning
from rdkit import Chem
from rdkit.Chem.rdchem import BondType as BT
from rdkit.Chem import AllChem, GetPeriodicTable, RemoveHs
from rdkit.Geometry import Point3D
from scipy import spatial
from scipy.special import softmax
from torch_cluster import radius_graph


import torch.nn.functional as F

from datasets.conformer_matching import get_torsion_angles, optimize_rotatable_bonds
from utils.torsion import get_transformation_mask


biopython_parser = PDBParser()
periodic_table = GetPeriodicTable()
allowable_features = {
    'possible_atomic_num_list': list(range(1, 119)) + ['misc'],
    'possible_chirality_list': [
        'CHI_UNSPECIFIED',
        'CHI_TETRAHEDRAL_CW',
        'CHI_TETRAHEDRAL_CCW',
        'CHI_OTHER'
    ],
    'possible_degree_list': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 'misc'],
    'possible_numring_list': [0, 1, 2, 3, 4, 5, 6, 'misc'],
    'possible_implicit_valence_list': [0, 1, 2, 3, 4, 5, 6, 'misc'],
    'possible_formal_charge_list': [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 'misc'],
    'possible_numH_list': [0, 1, 2, 3, 4, 5, 6, 7, 8, 'misc'],
    'possible_number_radical_e_list': [0, 1, 2, 3, 4, 'misc'],
    'possible_hybridization_list': [
        'SP', 'SP2', 'SP3', 'SP3D', 'SP3D2', 'misc'
    ],
    'possible_is_aromatic_list': [False, True],
    'possible_is_in_ring3_list': [False, True],
    'possible_is_in_ring4_list': [False, True],
    'possible_is_in_ring5_list': [False, True],
    'possible_is_in_ring6_list': [False, True],
    'possible_is_in_ring7_list': [False, True],
    'possible_is_in_ring8_list': [False, True],
    'possible_amino_acids': ['ALA', 'ARG', 'ASN', 'ASP', 'CYS', 'GLN', 'GLU', 'GLY', 'HIS', 'ILE', 'LEU', 'LYS', 'MET',
                             'PHE', 'PRO', 'SER', 'THR', 'TRP', 'TYR', 'VAL', 'HIP', 'HIE', 'TPO', 'HID', 'LEV', 'MEU',
                             'PTR', 'GLV', 'CYT', 'SEP', 'HIZ', 'CYM', 'GLM', 'ASQ', 'TYS', 'CYX', 'GLZ', 'misc'],
    'possible_atom_type_2': ['C*', 'CA', 'CB', 'CD', 'CE', 'CG', 'CH', 'CZ', 'N*', 'ND', 'NE', 'NH', 'NZ', 'O*', 'OD',
                             'OE', 'OG', 'OH', 'OX', 'S*', 'SD', 'SG', 'misc'],
    'possible_atom_type_3': ['C', 'CA', 'CB', 'CD', 'CD1', 'CD2', 'CE', 'CE1', 'CE2', 'CE3', 'CG', 'CG1', 'CG2', 'CH2',
                             'CZ', 'CZ2', 'CZ3', 'N', 'ND1', 'ND2', 'NE', 'NE1', 'NE2', 'NH1', 'NH2', 'NZ', 'O', 'OD1',
                             'OD2', 'OE1', 'OE2', 'OG', 'OG1', 'OH', 'OXT', 'SD', 'SG', 'misc'],
}
bonds = {BT.SINGLE: 0, BT.DOUBLE: 1, BT.TRIPLE: 2, BT.AROMATIC: 3}

lig_feature_dims = (list(map(len, [
    allowable_features['possible_atomic_num_list'],
    allowable_features['possible_chirality_list'],
    allowable_features['possible_degree_list'],
    allowable_features['possible_formal_charge_list'],
    allowable_features['possible_implicit_valence_list'],
    allowable_features['possible_numH_list'],
    allowable_features['possible_number_radical_e_list'],
    allowable_features['possible_hybridization_list'],
    allowable_features['possible_is_aromatic_list'],
    allowable_features['possible_numring_list'],
    allowable_features['possible_is_in_ring3_list'],
    allowable_features['possible_is_in_ring4_list'],
    allowable_features['possible_is_in_ring5_list'],
    allowable_features['possible_is_in_ring6_list'],
    allowable_features['possible_is_in_ring7_list'],
    allowable_features['possible_is_in_ring8_list'],
])), 0)  # number of scalar features

rec_atom_feature_dims = (list(map(len, [
    allowable_features['possible_amino_acids'],
    allowable_features['possible_atomic_num_list'],
    allowable_features['possible_atom_type_2'],
    allowable_features['possible_atom_type_3'],
])), 0)

rec_residue_feature_dims = (list(map(len, [
    allowable_features['possible_amino_acids']
])), 0)


def lig_atom_featurizer(mol):
    ringinfo = mol.GetRingInfo()
    atom_features_list = []
    for idx, atom in enumerate(mol.GetAtoms()):
        atom_features_list.append([
            safe_index(allowable_features['possible_atomic_num_list'], atom.GetAtomicNum()),
            allowable_features['possible_chirality_list'].index(str(atom.GetChiralTag())),
            safe_index(allowable_features['possible_degree_list'], atom.GetTotalDegree()),
            safe_index(allowable_features['possible_formal_charge_list'], atom.GetFormalCharge()),
            safe_index(allowable_features['possible_implicit_valence_list'], atom.GetImplicitValence()),
            safe_index(allowable_features['possible_numH_list'], atom.GetTotalNumHs()),
            safe_index(allowable_features['possible_number_radical_e_list'], atom.GetNumRadicalElectrons()),
            safe_index(allowable_features['possible_hybridization_list'], str(atom.GetHybridization())),
            allowable_features['possible_is_aromatic_list'].index(atom.GetIsAromatic()),
            safe_index(allowable_features['possible_numring_list'], ringinfo.NumAtomRings(idx)),
            allowable_features['possible_is_in_ring3_list'].index(ringinfo.IsAtomInRingOfSize(idx, 3)),
            allowable_features['possible_is_in_ring4_list'].index(ringinfo.IsAtomInRingOfSize(idx, 4)),
            allowable_features['possible_is_in_ring5_list'].index(ringinfo.IsAtomInRingOfSize(idx, 5)),
            allowable_features['possible_is_in_ring6_list'].index(ringinfo.IsAtomInRingOfSize(idx, 6)),
            allowable_features['possible_is_in_ring7_list'].index(ringinfo.IsAtomInRingOfSize(idx, 7)),
            allowable_features['possible_is_in_ring8_list'].index(ringinfo.IsAtomInRingOfSize(idx, 8)),
        ])

    return torch.tensor(atom_features_list)


def rec_residue_featurizer(rec):
    feature_list = []
    for residue in rec.get_residues():
        feature_list.append([safe_index(allowable_features['possible_amino_acids'], residue.get_resname())])
    return torch.tensor(feature_list, dtype=torch.float32)  # (N_res, 1)


def safe_index(l, e):
    """ Return index of element e in list l. If e is not present, return the last index """
    try:
        return l.index(e)
    except:
        return len(l) - 1



def parse_receptor(pdbid, pdbbind_dir):
    rec = parsePDB(pdbid, pdbbind_dir)
    return rec


def parsePDB(pdbid, pdbbind_dir):
    rec_path = os.path.join(pdbbind_dir, pdbid, f'{pdbid}_protein_processed.pdb')
    return parse_pdb_from_path(rec_path)

def parse_pdb_from_path(path):
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=PDBConstructionWarning)
        structure = biopython_parser.get_structure('random_id', path)
        rec = structure[0]
    return rec


def extract_receptor_structure(rec, lig, lm_embedding_chains=None):
    conf = lig.GetConformer()
    lig_coords = conf.GetPositions()
    min_distances = []
    coords = []
    c_alpha_coords = []
    n_coords = []
    c_coords = []
    valid_chain_ids = []
    lengths = []
    for i, chain in enumerate(rec):
        chain_coords = []  # num_residues, num_atoms, 3
        chain_c_alpha_coords = []
        chain_n_coords = []
        chain_c_coords = []
        count = 0
        invalid_res_ids = []
        for res_idx, residue in enumerate(chain):
            if residue.get_resname() == 'HOH':
                invalid_res_ids.append(residue.get_id())
                continue
            residue_coords = []
            c_alpha, n, c = None, None, None
            for atom in residue:
                if atom.name == 'CA':
                    c_alpha = list(atom.get_vector())
                if atom.name == 'N':
                    n = list(atom.get_vector())
                if atom.name == 'C':
                    c = list(atom.get_vector())
                residue_coords.append(list(atom.get_vector()))

            if c_alpha != None and n != None and c != None:
                # only append residue if it is an amino acid and not some weird molecule that is part of the complex
                chain_c_alpha_coords.append(c_alpha)
                chain_n_coords.append(n)
                chain_c_coords.append(c)
                chain_coords.append(np.array(residue_coords))
                count += 1
            else:
                invalid_res_ids.append(residue.get_id())
        for res_id in invalid_res_ids:
            chain.detach_child(res_id)
        if len(chain_coords) > 0:
            all_chain_coords = np.concatenate(chain_coords, axis=0)
            distances = spatial.distance.cdist(lig_coords, all_chain_coords)
            min_distance = distances.min()
        else:
            min_distance = np.inf

        min_distances.append(min_distance)
        lengths.append(count)
        coords.append(chain_coords)
        c_alpha_coords.append(np.array(chain_c_alpha_coords))
        n_coords.append(np.array(chain_n_coords))
        c_coords.append(np.array(chain_c_coords))
        if not count == 0: valid_chain_ids.append(chain.get_id())

    min_distances = np.array(min_distances)
    if len(valid_chain_ids) == 0:
        valid_chain_ids.append(np.argmin(min_distances))
    valid_coords = []
    valid_c_alpha_coords = []
    valid_n_coords = []
    valid_c_coords = []
    valid_lengths = []
    invalid_chain_ids = []
    valid_lm_embeddings = []
    for i, chain in enumerate(rec):
        if chain.get_id() in valid_chain_ids:
            valid_coords.append(coords[i])
            valid_c_alpha_coords.append(c_alpha_coords[i])
            if lm_embedding_chains is not None:
                if i >= len(lm_embedding_chains):
                    raise ValueError('Encountered valid chain id that was not present in the LM embeddings')
                valid_lm_embeddings.append(lm_embedding_chains[i])
            valid_n_coords.append(n_coords[i])
            valid_c_coords.append(c_coords[i])
            valid_lengths.append(lengths[i])
        else:
            invalid_chain_ids.append(chain.get_id())
    coords = [item for sublist in valid_coords for item in sublist]  # list with n_residues arrays: [n_atoms, 3]

    c_alpha_coords = np.concatenate(valid_c_alpha_coords, axis=0)  # [n_residues, 3]
    n_coords = np.concatenate(valid_n_coords, axis=0)  # [n_residues, 3]
    c_coords = np.concatenate(valid_c_coords, axis=0)  # [n_residues, 3]
    lm_embeddings = np.concatenate(valid_lm_embeddings, axis=0) if lm_embedding_chains is not None else None
    for invalid_id in invalid_chain_ids:
        rec.detach_child(invalid_id)

    assert len(c_alpha_coords) == len(n_coords)
    assert len(c_alpha_coords) == len(c_coords)
    assert sum(valid_lengths) == len(c_alpha_coords)
    return rec, coords, c_alpha_coords, n_coords, c_coords, lm_embeddings


def get_lig_graph(mol, complex_graph):
    lig_coords = torch.from_numpy(mol.GetConformer().GetPositions()).float()
    atom_feats = lig_atom_featurizer(mol)

    row, col, edge_type = [], [], []
    for bond in mol.GetBonds():
        start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
        row += [start, end]
        col += [end, start]
        edge_type += 2 * [bonds[bond.GetBondType()]] if bond.GetBondType() != BT.UNSPECIFIED else [0, 0]

    edge_index = torch.tensor([row, col], dtype=torch.long)
    edge_type = torch.tensor(edge_type, dtype=torch.long)
    edge_attr = F.one_hot(edge_type, num_classes=len(bonds)).to(torch.float)

    complex_graph['ligand'].x = atom_feats
    complex_graph['ligand'].pos = lig_coords
    complex_graph['ligand', 'lig_bond', 'ligand'].edge_index = edge_index
    complex_graph['ligand', 'lig_bond', 'ligand'].edge_attr = edge_attr
    return

def generate_conformer(mol):
    ps = AllChem.ETKDGv2()
    id = AllChem.EmbedMolecule(mol, ps)
    if id == -1:
        print('rdkit coords could not be generated without using random coords. using random coords now.')
        ps.useRandomCoords = True
        AllChem.EmbedMolecule(mol, ps)
        AllChem.MMFFOptimizeMolecule(mol, confId=0)
    # else:
    #    AllChem.MMFFOptimizeMolecule(mol_rdkit, confId=0)

def get_lig_graph_with_matching(mol_, complex_graph, popsize, maxiter, matching, keep_original, num_conformers, remove_hs):
    if matching:
        mol_maybe_noh = copy.deepcopy(mol_)
        if remove_hs:
            mol_maybe_noh = RemoveHs(mol_maybe_noh, sanitize=True)
        if keep_original:
            complex_graph['ligand'].orig_pos = mol_maybe_noh.GetConformer().GetPositions()

        rotable_bonds = get_torsion_angles(mol_maybe_noh)
        if not rotable_bonds: print("no_rotable_bonds but still using it")

        for i in range(num_conformers):
            mol_rdkit = copy.deepcopy(mol_)

            mol_rdkit.RemoveAllConformers()
            mol_rdkit = AllChem.AddHs(mol_rdkit)
            generate_conformer(mol_rdkit)
            if remove_hs:
                mol_rdkit = RemoveHs(mol_rdkit, sanitize=True)
            mol = copy.deepcopy(mol_maybe_noh)
            if rotable_bonds:
                optimize_rotatable_bonds(mol_rdkit, mol, rotable_bonds, popsize=popsize, maxiter=maxiter)
            mol.AddConformer(mol_rdkit.GetConformer())
            rms_list = []
            AllChem.AlignMolConformers(mol, RMSlist=rms_list)
            mol_rdkit.RemoveAllConformers()
            mol_rdkit.AddConformer(mol.GetConformers()[1])

            if i == 0:
                complex_graph.rmsd_matching = rms_list[0]
                get_lig_graph(mol_rdkit, complex_graph)
            else:
                if torch.is_tensor(complex_graph['ligand'].pos):
                    complex_graph['ligand'].pos = [complex_graph['ligand'].pos]
                complex_graph['ligand'].pos.append(torch.from_numpy(mol_rdkit.GetConformer().GetPositions()).float())

    else:  # no matching
        complex_graph.rmsd_matching = 0
        if remove_hs: mol_ = RemoveHs(mol_)
        get_lig_graph(mol_, complex_graph)

    edge_mask, mask_rotate = get_transformation_mask(complex_graph)
    complex_graph['ligand'].edge_mask = torch.tensor(edge_mask)
    complex_graph['ligand'].mask_rotate = mask_rotate

    return


def get_calpha_graph(rec, c_alpha_coords, n_coords, c_coords, complex_graph, cutoff=20, max_neighbor=None, lm_embeddings=None):
    n_rel_pos = n_coords - c_alpha_coords
    c_rel_pos = c_coords - c_alpha_coords
    num_residues = len(c_alpha_coords)
    if num_residues <= 1:
        raise ValueError(f"rec contains only 1 residue!")

    # Build the k-NN graph
    distances = spa.distance.cdist(c_alpha_coords, c_alpha_coords)
    src_list = []
    dst_list = []
    mean_norm_list = []
    for i in range(num_residues):
        dst = list(np.where(distances[i, :] < cutoff)[0])
        dst.remove(i)
        if max_neighbor != None and len(dst) > max_neighbor:
            dst = list(np.argsort(distances[i, :]))[1: max_neighbor + 1]
        if len(dst) == 0:
            dst = list(np.argsort(distances[i, :]))[1:2]  # choose second because first is i itself
            print(f'The c_alpha_cutoff {cutoff} was too small for one c_alpha such that it had no neighbors. '
                  f'So we connected it to the closest other c_alpha')
        assert i not in dst
        src = [i] * len(dst)
        src_list.extend(src)
        dst_list.extend(dst)
        valid_dist = list(distances[i, dst])
        valid_dist_np = distances[i, dst]
        sigma = np.array([1., 2., 5., 10., 30.]).reshape((-1, 1))
        weights = softmax(- valid_dist_np.reshape((1, -1)) ** 2 / sigma, axis=1)  # (sigma_num, neigh_num)
        assert weights[0].sum() > 1 - 1e-2 and weights[0].sum() < 1.01
        diff_vecs = c_alpha_coords[src, :] - c_alpha_coords[dst, :]  # (neigh_num, 3)
        mean_vec = weights.dot(diff_vecs)  # (sigma_num, 3)
        denominator = weights.dot(np.linalg.norm(diff_vecs, axis=1))  # (sigma_num,)
        mean_vec_ratio_norm = np.linalg.norm(mean_vec, axis=1) / denominator  # (sigma_num,)
        mean_norm_list.append(mean_vec_ratio_norm)
    assert len(src_list) == len(dst_list)

    node_feat = rec_residue_featurizer(rec)
    mu_r_norm = torch.from_numpy(np.array(mean_norm_list).astype(np.float32))
    side_chain_vecs = torch.from_numpy(
        np.concatenate([np.expand_dims(n_rel_pos, axis=1), np.expand_dims(c_rel_pos, axis=1)], axis=1))

    complex_graph['receptor'].x = torch.cat([node_feat, torch.tensor(lm_embeddings)], axis=1) if lm_embeddings is not None else node_feat
    complex_graph['receptor'].pos = torch.from_numpy(c_alpha_coords).float()
    complex_graph['receptor'].mu_r_norm = mu_r_norm
    complex_graph['receptor'].side_chain_vecs = side_chain_vecs.float()
    complex_graph['receptor', 'rec_contact', 'receptor'].edge_index = torch.from_numpy(np.asarray([src_list, dst_list]))

    return


def rec_atom_featurizer(rec):
    atom_feats = []
    for i, atom in enumerate(rec.get_atoms()):
        atom_name, element = atom.name, atom.element
        if element == 'CD':
            element = 'C'
        assert not element == ''
        try:
            atomic_num = periodic_table.GetAtomicNumber(element)
        except:
            atomic_num = -1
        atom_feat = [safe_index(allowable_features['possible_amino_acids'], atom.get_parent().get_resname()),
                     safe_index(allowable_features['possible_atomic_num_list'], atomic_num),
                     safe_index(allowable_features['possible_atom_type_2'], (atom_name + '*')[:2]),
                     safe_index(allowable_features['possible_atom_type_3'], atom_name)]
        atom_feats.append(atom_feat)

    return atom_feats


def get_rec_graph(rec, rec_coords, c_alpha_coords, n_coords, c_coords, complex_graph, rec_radius, c_alpha_max_neighbors=None, all_atoms=False,
                  atom_radius=5, atom_max_neighbors=None, remove_hs=False, lm_embeddings=None):
    if all_atoms:
        return get_fullrec_graph(rec, rec_coords, c_alpha_coords, n_coords, c_coords, complex_graph,
                                 c_alpha_cutoff=rec_radius, c_alpha_max_neighbors=c_alpha_max_neighbors,
                                 atom_cutoff=atom_radius, atom_max_neighbors=atom_max_neighbors, remove_hs=remove_hs,lm_embeddings=lm_embeddings)
    else:
        return get_calpha_graph(rec, c_alpha_coords, n_coords, c_coords, complex_graph, rec_radius, c_alpha_max_neighbors,lm_embeddings=lm_embeddings)


def get_fullrec_graph(rec, rec_coords, c_alpha_coords, n_coords, c_coords, complex_graph, c_alpha_cutoff=20,
                      c_alpha_max_neighbors=None, atom_cutoff=5, atom_max_neighbors=None, remove_hs=False, lm_embeddings=None):
    # builds the receptor graph with both residues and atoms

    n_rel_pos = n_coords - c_alpha_coords
    c_rel_pos = c_coords - c_alpha_coords
    num_residues = len(c_alpha_coords)
    if num_residues <= 1:
        raise ValueError(f"rec contains only 1 residue!")

    # Build the k-NN graph of residues
    distances = spa.distance.cdist(c_alpha_coords, c_alpha_coords)
    src_list = []
    dst_list = []
    mean_norm_list = []
    for i in range(num_residues):
        dst = list(np.where(distances[i, :] < c_alpha_cutoff)[0])
        dst.remove(i)
        if c_alpha_max_neighbors != None and len(dst) > c_alpha_max_neighbors:
            dst = list(np.argsort(distances[i, :]))[1: c_alpha_max_neighbors + 1]
        if len(dst) == 0:
            dst = list(np.argsort(distances[i, :]))[1:2]  # choose second because first is i itself
            print(f'The c_alpha_cutoff {c_alpha_cutoff} was too small for one c_alpha such that it had no neighbors. '
                  f'So we connected it to the closest other c_alpha')
        assert i not in dst
        src = [i] * len(dst)
        src_list.extend(src)
        dst_list.extend(dst)
        valid_dist = list(distances[i, dst])
        valid_dist_np = distances[i, dst]
        sigma = np.array([1., 2., 5., 10., 30.]).reshape((-1, 1))
        weights = softmax(- valid_dist_np.reshape((1, -1)) ** 2 / sigma, axis=1)  # (sigma_num, neigh_num)
        assert 1 - 1e-2 < weights[0].sum() < 1.01
        diff_vecs = c_alpha_coords[src, :] - c_alpha_coords[dst, :]  # (neigh_num, 3)
        mean_vec = weights.dot(diff_vecs)  # (sigma_num, 3)
        denominator = weights.dot(np.linalg.norm(diff_vecs, axis=1))  # (sigma_num,)
        mean_vec_ratio_norm = np.linalg.norm(mean_vec, axis=1) / denominator  # (sigma_num,)
        mean_norm_list.append(mean_vec_ratio_norm)
    assert len(src_list) == len(dst_list)

    node_feat = rec_residue_featurizer(rec)
    mu_r_norm = torch.from_numpy(np.array(mean_norm_list).astype(np.float32))
    side_chain_vecs = torch.from_numpy(
        np.concatenate([np.expand_dims(n_rel_pos, axis=1), np.expand_dims(c_rel_pos, axis=1)], axis=1))

    complex_graph['receptor'].x = torch.cat([node_feat, torch.tensor(lm_embeddings)], axis=1) if lm_embeddings is not None else node_feat
    complex_graph['receptor'].pos = torch.from_numpy(c_alpha_coords).float()
    complex_graph['receptor'].mu_r_norm = mu_r_norm
    complex_graph['receptor'].side_chain_vecs = side_chain_vecs.float()
    complex_graph['receptor', 'rec_contact', 'receptor'].edge_index = torch.from_numpy(np.asarray([src_list, dst_list]))

    src_c_alpha_idx = np.concatenate([np.asarray([i]*len(l)) for i, l in enumerate(rec_coords)])
    atom_feat = torch.from_numpy(np.asarray(rec_atom_featurizer(rec)))
    atom_coords = torch.from_numpy(np.concatenate(rec_coords, axis=0)).float()

    if remove_hs:
        not_hs = (atom_feat[:, 1] != 0)
        src_c_alpha_idx = src_c_alpha_idx[not_hs]
        atom_feat = atom_feat[not_hs]
        atom_coords = atom_coords[not_hs]

    atoms_edge_index = radius_graph(atom_coords, atom_cutoff, max_num_neighbors=atom_max_neighbors if atom_max_neighbors else 1000)
    atom_res_edge_index = torch.from_numpy(np.asarray([np.arange(len(atom_feat)), src_c_alpha_idx])).long()

    complex_graph['atom'].x = atom_feat
    complex_graph['atom'].pos = atom_coords
    complex_graph['atom', 'atom_contact', 'atom'].edge_index = atoms_edge_index
    complex_graph['atom', 'atom_rec_contact', 'receptor'].edge_index = atom_res_edge_index

    return

def write_mol_with_coords(mol, new_coords, path):
    w = Chem.SDWriter(path)
    conf = mol.GetConformer()
    for i in range(mol.GetNumAtoms()):
        x,y,z = new_coords.astype(np.double)[i]
        conf.SetAtomPosition(i,Point3D(x,y,z))
    w.write(mol)
    w.close()

def read_molecule(molecule_file, sanitize=False, calc_charges=False, remove_hs=False):
    if molecule_file.endswith('.mol2'):
        mol = Chem.MolFromMol2File(molecule_file, sanitize=False, removeHs=False)
    elif molecule_file.endswith('.sdf'):
        print(molecule_file)
        supplier = Chem.SDMolSupplier(molecule_file, sanitize=False, removeHs=False)
        mol = supplier[0]
        print(mol)
    elif molecule_file.endswith('.pdbqt'):
        with open(molecule_file) as file:
            pdbqt_data = file.readlines()
        pdb_block = ''
        for line in pdbqt_data:
            pdb_block += '{}\n'.format(line[:66])
        mol = Chem.MolFromPDBBlock(pdb_block, sanitize=False, removeHs=False)
    elif molecule_file.endswith('.pdb'):
        mol = Chem.MolFromPDBFile(molecule_file, sanitize=False, removeHs=False)
    else:
        return ValueError('Expect the format of the molecule_file to be '
                          'one of .mol2, .sdf, .pdbqt and .pdb, got {}'.format(molecule_file))

    print(sanitize, calc_charges, remove_hs)

    try:
        if sanitize or calc_charges:
            Chem.SanitizeMol(mol)

        if calc_charges:
            # Compute Gasteiger charges on the molecule.
            try:
                AllChem.ComputeGasteigerCharges(mol)
            except:
                warnings.warn('Unable to compute charges for the molecule.')

        if remove_hs:
            mol = Chem.RemoveHs(mol, sanitize=sanitize)
    except Exception as e:
        print(e)
        return None

    return mol


def read_sdf_or_mol2(sdf_fileName, mol2_fileName):

    mol = Chem.MolFromMolFile(sdf_fileName, sanitize=False)
    problem = False
    try:
        Chem.SanitizeMol(mol)
        mol = Chem.RemoveHs(mol)
    except Exception as e:
        problem = True
    if problem:
        mol = Chem.MolFromMol2File(mol2_fileName, sanitize=False)
        try:
            Chem.SanitizeMol(mol)
            mol = Chem.RemoveHs(mol)
            problem = False
        except Exception as e:
            problem = True

    return mol, problem