Spaces:
Running
on
T4
Running
on
T4
File size: 24,546 Bytes
4a3f787 486fd8a 4a3f787 486fd8a 4a3f787 486fd8a 4a3f787 486fd8a 4a3f787 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
import copy
import os
import warnings
import numpy as np
import scipy.spatial as spa
import torch
from Bio.PDB import PDBParser
from Bio.PDB.PDBExceptions import PDBConstructionWarning
from rdkit import Chem
from rdkit.Chem.rdchem import BondType as BT
from rdkit.Chem import AllChem, GetPeriodicTable, RemoveHs
from rdkit.Geometry import Point3D
from scipy import spatial
from scipy.special import softmax
from torch_cluster import radius_graph
import torch.nn.functional as F
from datasets.conformer_matching import get_torsion_angles, optimize_rotatable_bonds
from utils.torsion import get_transformation_mask
biopython_parser = PDBParser()
periodic_table = GetPeriodicTable()
allowable_features = {
'possible_atomic_num_list': list(range(1, 119)) + ['misc'],
'possible_chirality_list': [
'CHI_UNSPECIFIED',
'CHI_TETRAHEDRAL_CW',
'CHI_TETRAHEDRAL_CCW',
'CHI_OTHER'
],
'possible_degree_list': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 'misc'],
'possible_numring_list': [0, 1, 2, 3, 4, 5, 6, 'misc'],
'possible_implicit_valence_list': [0, 1, 2, 3, 4, 5, 6, 'misc'],
'possible_formal_charge_list': [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 'misc'],
'possible_numH_list': [0, 1, 2, 3, 4, 5, 6, 7, 8, 'misc'],
'possible_number_radical_e_list': [0, 1, 2, 3, 4, 'misc'],
'possible_hybridization_list': [
'SP', 'SP2', 'SP3', 'SP3D', 'SP3D2', 'misc'
],
'possible_is_aromatic_list': [False, True],
'possible_is_in_ring3_list': [False, True],
'possible_is_in_ring4_list': [False, True],
'possible_is_in_ring5_list': [False, True],
'possible_is_in_ring6_list': [False, True],
'possible_is_in_ring7_list': [False, True],
'possible_is_in_ring8_list': [False, True],
'possible_amino_acids': ['ALA', 'ARG', 'ASN', 'ASP', 'CYS', 'GLN', 'GLU', 'GLY', 'HIS', 'ILE', 'LEU', 'LYS', 'MET',
'PHE', 'PRO', 'SER', 'THR', 'TRP', 'TYR', 'VAL', 'HIP', 'HIE', 'TPO', 'HID', 'LEV', 'MEU',
'PTR', 'GLV', 'CYT', 'SEP', 'HIZ', 'CYM', 'GLM', 'ASQ', 'TYS', 'CYX', 'GLZ', 'misc'],
'possible_atom_type_2': ['C*', 'CA', 'CB', 'CD', 'CE', 'CG', 'CH', 'CZ', 'N*', 'ND', 'NE', 'NH', 'NZ', 'O*', 'OD',
'OE', 'OG', 'OH', 'OX', 'S*', 'SD', 'SG', 'misc'],
'possible_atom_type_3': ['C', 'CA', 'CB', 'CD', 'CD1', 'CD2', 'CE', 'CE1', 'CE2', 'CE3', 'CG', 'CG1', 'CG2', 'CH2',
'CZ', 'CZ2', 'CZ3', 'N', 'ND1', 'ND2', 'NE', 'NE1', 'NE2', 'NH1', 'NH2', 'NZ', 'O', 'OD1',
'OD2', 'OE1', 'OE2', 'OG', 'OG1', 'OH', 'OXT', 'SD', 'SG', 'misc'],
}
bonds = {BT.SINGLE: 0, BT.DOUBLE: 1, BT.TRIPLE: 2, BT.AROMATIC: 3}
lig_feature_dims = (list(map(len, [
allowable_features['possible_atomic_num_list'],
allowable_features['possible_chirality_list'],
allowable_features['possible_degree_list'],
allowable_features['possible_formal_charge_list'],
allowable_features['possible_implicit_valence_list'],
allowable_features['possible_numH_list'],
allowable_features['possible_number_radical_e_list'],
allowable_features['possible_hybridization_list'],
allowable_features['possible_is_aromatic_list'],
allowable_features['possible_numring_list'],
allowable_features['possible_is_in_ring3_list'],
allowable_features['possible_is_in_ring4_list'],
allowable_features['possible_is_in_ring5_list'],
allowable_features['possible_is_in_ring6_list'],
allowable_features['possible_is_in_ring7_list'],
allowable_features['possible_is_in_ring8_list'],
])), 0) # number of scalar features
rec_atom_feature_dims = (list(map(len, [
allowable_features['possible_amino_acids'],
allowable_features['possible_atomic_num_list'],
allowable_features['possible_atom_type_2'],
allowable_features['possible_atom_type_3'],
])), 0)
rec_residue_feature_dims = (list(map(len, [
allowable_features['possible_amino_acids']
])), 0)
def lig_atom_featurizer(mol):
ringinfo = mol.GetRingInfo()
atom_features_list = []
for idx, atom in enumerate(mol.GetAtoms()):
atom_features_list.append([
safe_index(allowable_features['possible_atomic_num_list'], atom.GetAtomicNum()),
allowable_features['possible_chirality_list'].index(str(atom.GetChiralTag())),
safe_index(allowable_features['possible_degree_list'], atom.GetTotalDegree()),
safe_index(allowable_features['possible_formal_charge_list'], atom.GetFormalCharge()),
safe_index(allowable_features['possible_implicit_valence_list'], atom.GetImplicitValence()),
safe_index(allowable_features['possible_numH_list'], atom.GetTotalNumHs()),
safe_index(allowable_features['possible_number_radical_e_list'], atom.GetNumRadicalElectrons()),
safe_index(allowable_features['possible_hybridization_list'], str(atom.GetHybridization())),
allowable_features['possible_is_aromatic_list'].index(atom.GetIsAromatic()),
safe_index(allowable_features['possible_numring_list'], ringinfo.NumAtomRings(idx)),
allowable_features['possible_is_in_ring3_list'].index(ringinfo.IsAtomInRingOfSize(idx, 3)),
allowable_features['possible_is_in_ring4_list'].index(ringinfo.IsAtomInRingOfSize(idx, 4)),
allowable_features['possible_is_in_ring5_list'].index(ringinfo.IsAtomInRingOfSize(idx, 5)),
allowable_features['possible_is_in_ring6_list'].index(ringinfo.IsAtomInRingOfSize(idx, 6)),
allowable_features['possible_is_in_ring7_list'].index(ringinfo.IsAtomInRingOfSize(idx, 7)),
allowable_features['possible_is_in_ring8_list'].index(ringinfo.IsAtomInRingOfSize(idx, 8)),
])
return torch.tensor(atom_features_list)
def rec_residue_featurizer(rec):
feature_list = []
for residue in rec.get_residues():
feature_list.append([safe_index(allowable_features['possible_amino_acids'], residue.get_resname())])
return torch.tensor(feature_list, dtype=torch.float32) # (N_res, 1)
def safe_index(l, e):
""" Return index of element e in list l. If e is not present, return the last index """
try:
return l.index(e)
except:
return len(l) - 1
def parse_receptor(pdbid, pdbbind_dir):
rec = parsePDB(pdbid, pdbbind_dir)
return rec
def parsePDB(pdbid, pdbbind_dir):
rec_path = os.path.join(pdbbind_dir, pdbid, f'{pdbid}_protein_processed.pdb')
return parse_pdb_from_path(rec_path)
def parse_pdb_from_path(path):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=PDBConstructionWarning)
structure = biopython_parser.get_structure('random_id', path)
rec = structure[0]
return rec
def extract_receptor_structure(rec, lig, lm_embedding_chains=None):
conf = lig.GetConformer()
lig_coords = conf.GetPositions()
min_distances = []
coords = []
c_alpha_coords = []
n_coords = []
c_coords = []
valid_chain_ids = []
lengths = []
for i, chain in enumerate(rec):
chain_coords = [] # num_residues, num_atoms, 3
chain_c_alpha_coords = []
chain_n_coords = []
chain_c_coords = []
count = 0
invalid_res_ids = []
for res_idx, residue in enumerate(chain):
if residue.get_resname() == 'HOH':
invalid_res_ids.append(residue.get_id())
continue
residue_coords = []
c_alpha, n, c = None, None, None
for atom in residue:
if atom.name == 'CA':
c_alpha = list(atom.get_vector())
if atom.name == 'N':
n = list(atom.get_vector())
if atom.name == 'C':
c = list(atom.get_vector())
residue_coords.append(list(atom.get_vector()))
if c_alpha != None and n != None and c != None:
# only append residue if it is an amino acid and not some weird molecule that is part of the complex
chain_c_alpha_coords.append(c_alpha)
chain_n_coords.append(n)
chain_c_coords.append(c)
chain_coords.append(np.array(residue_coords))
count += 1
else:
invalid_res_ids.append(residue.get_id())
for res_id in invalid_res_ids:
chain.detach_child(res_id)
if len(chain_coords) > 0:
all_chain_coords = np.concatenate(chain_coords, axis=0)
distances = spatial.distance.cdist(lig_coords, all_chain_coords)
min_distance = distances.min()
else:
min_distance = np.inf
min_distances.append(min_distance)
lengths.append(count)
coords.append(chain_coords)
c_alpha_coords.append(np.array(chain_c_alpha_coords))
n_coords.append(np.array(chain_n_coords))
c_coords.append(np.array(chain_c_coords))
if not count == 0: valid_chain_ids.append(chain.get_id())
min_distances = np.array(min_distances)
if len(valid_chain_ids) == 0:
valid_chain_ids.append(np.argmin(min_distances))
valid_coords = []
valid_c_alpha_coords = []
valid_n_coords = []
valid_c_coords = []
valid_lengths = []
invalid_chain_ids = []
valid_lm_embeddings = []
for i, chain in enumerate(rec):
if chain.get_id() in valid_chain_ids:
valid_coords.append(coords[i])
valid_c_alpha_coords.append(c_alpha_coords[i])
if lm_embedding_chains is not None:
if i >= len(lm_embedding_chains):
raise ValueError('Encountered valid chain id that was not present in the LM embeddings')
valid_lm_embeddings.append(lm_embedding_chains[i])
valid_n_coords.append(n_coords[i])
valid_c_coords.append(c_coords[i])
valid_lengths.append(lengths[i])
else:
invalid_chain_ids.append(chain.get_id())
coords = [item for sublist in valid_coords for item in sublist] # list with n_residues arrays: [n_atoms, 3]
c_alpha_coords = np.concatenate(valid_c_alpha_coords, axis=0) # [n_residues, 3]
n_coords = np.concatenate(valid_n_coords, axis=0) # [n_residues, 3]
c_coords = np.concatenate(valid_c_coords, axis=0) # [n_residues, 3]
lm_embeddings = np.concatenate(valid_lm_embeddings, axis=0) if lm_embedding_chains is not None else None
for invalid_id in invalid_chain_ids:
rec.detach_child(invalid_id)
assert len(c_alpha_coords) == len(n_coords)
assert len(c_alpha_coords) == len(c_coords)
assert sum(valid_lengths) == len(c_alpha_coords)
return rec, coords, c_alpha_coords, n_coords, c_coords, lm_embeddings
def get_lig_graph(mol, complex_graph):
lig_coords = torch.from_numpy(mol.GetConformer().GetPositions()).float()
atom_feats = lig_atom_featurizer(mol)
row, col, edge_type = [], [], []
for bond in mol.GetBonds():
start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
row += [start, end]
col += [end, start]
edge_type += 2 * [bonds[bond.GetBondType()]] if bond.GetBondType() != BT.UNSPECIFIED else [0, 0]
edge_index = torch.tensor([row, col], dtype=torch.long)
edge_type = torch.tensor(edge_type, dtype=torch.long)
edge_attr = F.one_hot(edge_type, num_classes=len(bonds)).to(torch.float)
complex_graph['ligand'].x = atom_feats
complex_graph['ligand'].pos = lig_coords
complex_graph['ligand', 'lig_bond', 'ligand'].edge_index = edge_index
complex_graph['ligand', 'lig_bond', 'ligand'].edge_attr = edge_attr
return
def generate_conformer(mol):
ps = AllChem.ETKDGv2()
id = AllChem.EmbedMolecule(mol, ps)
if id == -1:
print('rdkit coords could not be generated without using random coords. using random coords now.')
ps.useRandomCoords = True
AllChem.EmbedMolecule(mol, ps)
AllChem.MMFFOptimizeMolecule(mol, confId=0)
# else:
# AllChem.MMFFOptimizeMolecule(mol_rdkit, confId=0)
def get_lig_graph_with_matching(mol_, complex_graph, popsize, maxiter, matching, keep_original, num_conformers, remove_hs):
if matching:
mol_maybe_noh = copy.deepcopy(mol_)
if remove_hs:
mol_maybe_noh = RemoveHs(mol_maybe_noh, sanitize=True)
if keep_original:
complex_graph['ligand'].orig_pos = mol_maybe_noh.GetConformer().GetPositions()
rotable_bonds = get_torsion_angles(mol_maybe_noh)
if not rotable_bonds: print("no_rotable_bonds but still using it")
for i in range(num_conformers):
mol_rdkit = copy.deepcopy(mol_)
mol_rdkit.RemoveAllConformers()
mol_rdkit = AllChem.AddHs(mol_rdkit)
generate_conformer(mol_rdkit)
if remove_hs:
mol_rdkit = RemoveHs(mol_rdkit, sanitize=True)
mol = copy.deepcopy(mol_maybe_noh)
if rotable_bonds:
optimize_rotatable_bonds(mol_rdkit, mol, rotable_bonds, popsize=popsize, maxiter=maxiter)
mol.AddConformer(mol_rdkit.GetConformer())
rms_list = []
AllChem.AlignMolConformers(mol, RMSlist=rms_list)
mol_rdkit.RemoveAllConformers()
mol_rdkit.AddConformer(mol.GetConformers()[1])
if i == 0:
complex_graph.rmsd_matching = rms_list[0]
get_lig_graph(mol_rdkit, complex_graph)
else:
if torch.is_tensor(complex_graph['ligand'].pos):
complex_graph['ligand'].pos = [complex_graph['ligand'].pos]
complex_graph['ligand'].pos.append(torch.from_numpy(mol_rdkit.GetConformer().GetPositions()).float())
else: # no matching
complex_graph.rmsd_matching = 0
if remove_hs: mol_ = RemoveHs(mol_)
get_lig_graph(mol_, complex_graph)
edge_mask, mask_rotate = get_transformation_mask(complex_graph)
complex_graph['ligand'].edge_mask = torch.tensor(edge_mask)
complex_graph['ligand'].mask_rotate = mask_rotate
return
def get_calpha_graph(rec, c_alpha_coords, n_coords, c_coords, complex_graph, cutoff=20, max_neighbor=None, lm_embeddings=None):
n_rel_pos = n_coords - c_alpha_coords
c_rel_pos = c_coords - c_alpha_coords
num_residues = len(c_alpha_coords)
if num_residues <= 1:
raise ValueError(f"rec contains only 1 residue!")
# Build the k-NN graph
distances = spa.distance.cdist(c_alpha_coords, c_alpha_coords)
src_list = []
dst_list = []
mean_norm_list = []
for i in range(num_residues):
dst = list(np.where(distances[i, :] < cutoff)[0])
dst.remove(i)
if max_neighbor != None and len(dst) > max_neighbor:
dst = list(np.argsort(distances[i, :]))[1: max_neighbor + 1]
if len(dst) == 0:
dst = list(np.argsort(distances[i, :]))[1:2] # choose second because first is i itself
print(f'The c_alpha_cutoff {cutoff} was too small for one c_alpha such that it had no neighbors. '
f'So we connected it to the closest other c_alpha')
assert i not in dst
src = [i] * len(dst)
src_list.extend(src)
dst_list.extend(dst)
valid_dist = list(distances[i, dst])
valid_dist_np = distances[i, dst]
sigma = np.array([1., 2., 5., 10., 30.]).reshape((-1, 1))
weights = softmax(- valid_dist_np.reshape((1, -1)) ** 2 / sigma, axis=1) # (sigma_num, neigh_num)
assert weights[0].sum() > 1 - 1e-2 and weights[0].sum() < 1.01
diff_vecs = c_alpha_coords[src, :] - c_alpha_coords[dst, :] # (neigh_num, 3)
mean_vec = weights.dot(diff_vecs) # (sigma_num, 3)
denominator = weights.dot(np.linalg.norm(diff_vecs, axis=1)) # (sigma_num,)
mean_vec_ratio_norm = np.linalg.norm(mean_vec, axis=1) / denominator # (sigma_num,)
mean_norm_list.append(mean_vec_ratio_norm)
assert len(src_list) == len(dst_list)
node_feat = rec_residue_featurizer(rec)
mu_r_norm = torch.from_numpy(np.array(mean_norm_list).astype(np.float32))
side_chain_vecs = torch.from_numpy(
np.concatenate([np.expand_dims(n_rel_pos, axis=1), np.expand_dims(c_rel_pos, axis=1)], axis=1))
complex_graph['receptor'].x = torch.cat([node_feat, torch.tensor(lm_embeddings)], axis=1) if lm_embeddings is not None else node_feat
complex_graph['receptor'].pos = torch.from_numpy(c_alpha_coords).float()
complex_graph['receptor'].mu_r_norm = mu_r_norm
complex_graph['receptor'].side_chain_vecs = side_chain_vecs.float()
complex_graph['receptor', 'rec_contact', 'receptor'].edge_index = torch.from_numpy(np.asarray([src_list, dst_list]))
return
def rec_atom_featurizer(rec):
atom_feats = []
for i, atom in enumerate(rec.get_atoms()):
atom_name, element = atom.name, atom.element
if element == 'CD':
element = 'C'
assert not element == ''
try:
atomic_num = periodic_table.GetAtomicNumber(element)
except:
atomic_num = -1
atom_feat = [safe_index(allowable_features['possible_amino_acids'], atom.get_parent().get_resname()),
safe_index(allowable_features['possible_atomic_num_list'], atomic_num),
safe_index(allowable_features['possible_atom_type_2'], (atom_name + '*')[:2]),
safe_index(allowable_features['possible_atom_type_3'], atom_name)]
atom_feats.append(atom_feat)
return atom_feats
def get_rec_graph(rec, rec_coords, c_alpha_coords, n_coords, c_coords, complex_graph, rec_radius, c_alpha_max_neighbors=None, all_atoms=False,
atom_radius=5, atom_max_neighbors=None, remove_hs=False, lm_embeddings=None):
if all_atoms:
return get_fullrec_graph(rec, rec_coords, c_alpha_coords, n_coords, c_coords, complex_graph,
c_alpha_cutoff=rec_radius, c_alpha_max_neighbors=c_alpha_max_neighbors,
atom_cutoff=atom_radius, atom_max_neighbors=atom_max_neighbors, remove_hs=remove_hs,lm_embeddings=lm_embeddings)
else:
return get_calpha_graph(rec, c_alpha_coords, n_coords, c_coords, complex_graph, rec_radius, c_alpha_max_neighbors,lm_embeddings=lm_embeddings)
def get_fullrec_graph(rec, rec_coords, c_alpha_coords, n_coords, c_coords, complex_graph, c_alpha_cutoff=20,
c_alpha_max_neighbors=None, atom_cutoff=5, atom_max_neighbors=None, remove_hs=False, lm_embeddings=None):
# builds the receptor graph with both residues and atoms
n_rel_pos = n_coords - c_alpha_coords
c_rel_pos = c_coords - c_alpha_coords
num_residues = len(c_alpha_coords)
if num_residues <= 1:
raise ValueError(f"rec contains only 1 residue!")
# Build the k-NN graph of residues
distances = spa.distance.cdist(c_alpha_coords, c_alpha_coords)
src_list = []
dst_list = []
mean_norm_list = []
for i in range(num_residues):
dst = list(np.where(distances[i, :] < c_alpha_cutoff)[0])
dst.remove(i)
if c_alpha_max_neighbors != None and len(dst) > c_alpha_max_neighbors:
dst = list(np.argsort(distances[i, :]))[1: c_alpha_max_neighbors + 1]
if len(dst) == 0:
dst = list(np.argsort(distances[i, :]))[1:2] # choose second because first is i itself
print(f'The c_alpha_cutoff {c_alpha_cutoff} was too small for one c_alpha such that it had no neighbors. '
f'So we connected it to the closest other c_alpha')
assert i not in dst
src = [i] * len(dst)
src_list.extend(src)
dst_list.extend(dst)
valid_dist = list(distances[i, dst])
valid_dist_np = distances[i, dst]
sigma = np.array([1., 2., 5., 10., 30.]).reshape((-1, 1))
weights = softmax(- valid_dist_np.reshape((1, -1)) ** 2 / sigma, axis=1) # (sigma_num, neigh_num)
assert 1 - 1e-2 < weights[0].sum() < 1.01
diff_vecs = c_alpha_coords[src, :] - c_alpha_coords[dst, :] # (neigh_num, 3)
mean_vec = weights.dot(diff_vecs) # (sigma_num, 3)
denominator = weights.dot(np.linalg.norm(diff_vecs, axis=1)) # (sigma_num,)
mean_vec_ratio_norm = np.linalg.norm(mean_vec, axis=1) / denominator # (sigma_num,)
mean_norm_list.append(mean_vec_ratio_norm)
assert len(src_list) == len(dst_list)
node_feat = rec_residue_featurizer(rec)
mu_r_norm = torch.from_numpy(np.array(mean_norm_list).astype(np.float32))
side_chain_vecs = torch.from_numpy(
np.concatenate([np.expand_dims(n_rel_pos, axis=1), np.expand_dims(c_rel_pos, axis=1)], axis=1))
complex_graph['receptor'].x = torch.cat([node_feat, torch.tensor(lm_embeddings)], axis=1) if lm_embeddings is not None else node_feat
complex_graph['receptor'].pos = torch.from_numpy(c_alpha_coords).float()
complex_graph['receptor'].mu_r_norm = mu_r_norm
complex_graph['receptor'].side_chain_vecs = side_chain_vecs.float()
complex_graph['receptor', 'rec_contact', 'receptor'].edge_index = torch.from_numpy(np.asarray([src_list, dst_list]))
src_c_alpha_idx = np.concatenate([np.asarray([i]*len(l)) for i, l in enumerate(rec_coords)])
atom_feat = torch.from_numpy(np.asarray(rec_atom_featurizer(rec)))
atom_coords = torch.from_numpy(np.concatenate(rec_coords, axis=0)).float()
if remove_hs:
not_hs = (atom_feat[:, 1] != 0)
src_c_alpha_idx = src_c_alpha_idx[not_hs]
atom_feat = atom_feat[not_hs]
atom_coords = atom_coords[not_hs]
atoms_edge_index = radius_graph(atom_coords, atom_cutoff, max_num_neighbors=atom_max_neighbors if atom_max_neighbors else 1000)
atom_res_edge_index = torch.from_numpy(np.asarray([np.arange(len(atom_feat)), src_c_alpha_idx])).long()
complex_graph['atom'].x = atom_feat
complex_graph['atom'].pos = atom_coords
complex_graph['atom', 'atom_contact', 'atom'].edge_index = atoms_edge_index
complex_graph['atom', 'atom_rec_contact', 'receptor'].edge_index = atom_res_edge_index
return
def write_mol_with_coords(mol, new_coords, path):
w = Chem.SDWriter(path)
conf = mol.GetConformer()
for i in range(mol.GetNumAtoms()):
x,y,z = new_coords.astype(np.double)[i]
conf.SetAtomPosition(i,Point3D(x,y,z))
w.write(mol)
w.close()
def read_molecule(molecule_file, sanitize=False, calc_charges=False, remove_hs=False):
if molecule_file.endswith('.mol2'):
mol = Chem.MolFromMol2File(molecule_file, sanitize=False, removeHs=False)
elif molecule_file.endswith('.sdf'):
print(molecule_file)
supplier = Chem.SDMolSupplier(molecule_file, sanitize=False, removeHs=False)
mol = supplier[0]
print(mol)
elif molecule_file.endswith('.pdbqt'):
with open(molecule_file) as file:
pdbqt_data = file.readlines()
pdb_block = ''
for line in pdbqt_data:
pdb_block += '{}\n'.format(line[:66])
mol = Chem.MolFromPDBBlock(pdb_block, sanitize=False, removeHs=False)
elif molecule_file.endswith('.pdb'):
mol = Chem.MolFromPDBFile(molecule_file, sanitize=False, removeHs=False)
else:
return ValueError('Expect the format of the molecule_file to be '
'one of .mol2, .sdf, .pdbqt and .pdb, got {}'.format(molecule_file))
print(sanitize, calc_charges, remove_hs)
try:
if sanitize or calc_charges:
Chem.SanitizeMol(mol)
if calc_charges:
# Compute Gasteiger charges on the molecule.
try:
AllChem.ComputeGasteigerCharges(mol)
except:
warnings.warn('Unable to compute charges for the molecule.')
if remove_hs:
mol = Chem.RemoveHs(mol, sanitize=sanitize)
except Exception as e:
print(e)
return None
return mol
def read_sdf_or_mol2(sdf_fileName, mol2_fileName):
mol = Chem.MolFromMolFile(sdf_fileName, sanitize=False)
problem = False
try:
Chem.SanitizeMol(mol)
mol = Chem.RemoveHs(mol)
except Exception as e:
problem = True
if problem:
mol = Chem.MolFromMol2File(mol2_fileName, sanitize=False)
try:
Chem.SanitizeMol(mol)
mol = Chem.RemoveHs(mol)
problem = False
except Exception as e:
problem = True
return mol, problem
|