Spaces:
Runtime error
Runtime error
File size: 23,645 Bytes
4a3f787 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import math
from e3nn import o3
import torch
from torch import nn
from torch.nn import functional as F
from torch_cluster import radius, radius_graph
from torch_scatter import scatter, scatter_mean
import numpy as np
from e3nn.nn import BatchNorm
from utils import so3, torus
from datasets.process_mols import lig_feature_dims, rec_residue_feature_dims
class AtomEncoder(torch.nn.Module):
def __init__(self, emb_dim, feature_dims, sigma_embed_dim, lm_embedding_type= None):
# first element of feature_dims tuple is a list with the lenght of each categorical feature and the second is the number of scalar features
super(AtomEncoder, self).__init__()
self.atom_embedding_list = torch.nn.ModuleList()
self.num_categorical_features = len(feature_dims[0])
self.num_scalar_features = feature_dims[1] + sigma_embed_dim
self.lm_embedding_type = lm_embedding_type
for i, dim in enumerate(feature_dims[0]):
emb = torch.nn.Embedding(dim, emb_dim)
torch.nn.init.xavier_uniform_(emb.weight.data)
self.atom_embedding_list.append(emb)
if self.num_scalar_features > 0:
self.linear = torch.nn.Linear(self.num_scalar_features, emb_dim)
if self.lm_embedding_type is not None:
if self.lm_embedding_type == 'esm':
self.lm_embedding_dim = 1280
else: raise ValueError('LM Embedding type was not correctly determined. LM embedding type: ', self.lm_embedding_type)
self.lm_embedding_layer = torch.nn.Linear(self.lm_embedding_dim + emb_dim, emb_dim)
def forward(self, x):
x_embedding = 0
if self.lm_embedding_type is not None:
assert x.shape[1] == self.num_categorical_features + self.num_scalar_features + self.lm_embedding_dim
else:
assert x.shape[1] == self.num_categorical_features + self.num_scalar_features
for i in range(self.num_categorical_features):
x_embedding += self.atom_embedding_list[i](x[:, i].long())
if self.num_scalar_features > 0:
x_embedding += self.linear(x[:, self.num_categorical_features:self.num_categorical_features + self.num_scalar_features])
if self.lm_embedding_type is not None:
x_embedding = self.lm_embedding_layer(torch.cat([x_embedding, x[:, -self.lm_embedding_dim:]], axis=1))
return x_embedding
class TensorProductConvLayer(torch.nn.Module):
def __init__(self, in_irreps, sh_irreps, out_irreps, n_edge_features, residual=True, batch_norm=True, dropout=0.0,
hidden_features=None):
super(TensorProductConvLayer, self).__init__()
self.in_irreps = in_irreps
self.out_irreps = out_irreps
self.sh_irreps = sh_irreps
self.residual = residual
if hidden_features is None:
hidden_features = n_edge_features
self.tp = tp = o3.FullyConnectedTensorProduct(in_irreps, sh_irreps, out_irreps, shared_weights=False)
self.fc = nn.Sequential(
nn.Linear(n_edge_features, hidden_features),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_features, tp.weight_numel)
)
self.batch_norm = BatchNorm(out_irreps) if batch_norm else None
def forward(self, node_attr, edge_index, edge_attr, edge_sh, out_nodes=None, reduce='mean'):
edge_src, edge_dst = edge_index
tp = self.tp(node_attr[edge_dst], edge_sh, self.fc(edge_attr))
out_nodes = out_nodes or node_attr.shape[0]
out = scatter(tp, edge_src, dim=0, dim_size=out_nodes, reduce=reduce)
if self.residual:
padded = F.pad(node_attr, (0, out.shape[-1] - node_attr.shape[-1]))
out = out + padded
if self.batch_norm:
out = self.batch_norm(out)
return out
class TensorProductScoreModel(torch.nn.Module):
def __init__(self, t_to_sigma, device, timestep_emb_func, in_lig_edge_features=4, sigma_embed_dim=32, sh_lmax=2,
ns=16, nv=4, num_conv_layers=2, lig_max_radius=5, rec_max_radius=30, cross_max_distance=250,
center_max_distance=30, distance_embed_dim=32, cross_distance_embed_dim=32, no_torsion=False,
scale_by_sigma=True, use_second_order_repr=False, batch_norm=True,
dynamic_max_cross=False, dropout=0.0, lm_embedding_type=None, confidence_mode=False,
confidence_dropout=0, confidence_no_batchnorm=False, num_confidence_outputs=1):
super(TensorProductScoreModel, self).__init__()
self.t_to_sigma = t_to_sigma
self.in_lig_edge_features = in_lig_edge_features
self.sigma_embed_dim = sigma_embed_dim
self.lig_max_radius = lig_max_radius
self.rec_max_radius = rec_max_radius
self.cross_max_distance = cross_max_distance
self.dynamic_max_cross = dynamic_max_cross
self.center_max_distance = center_max_distance
self.distance_embed_dim = distance_embed_dim
self.cross_distance_embed_dim = cross_distance_embed_dim
self.sh_irreps = o3.Irreps.spherical_harmonics(lmax=sh_lmax)
self.ns, self.nv = ns, nv
self.scale_by_sigma = scale_by_sigma
self.device = device
self.no_torsion = no_torsion
self.timestep_emb_func = timestep_emb_func
self.confidence_mode = confidence_mode
self.num_conv_layers = num_conv_layers
self.lig_node_embedding = AtomEncoder(emb_dim=ns, feature_dims=lig_feature_dims, sigma_embed_dim=sigma_embed_dim)
self.lig_edge_embedding = nn.Sequential(nn.Linear(in_lig_edge_features + sigma_embed_dim + distance_embed_dim, ns),nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns))
self.rec_node_embedding = AtomEncoder(emb_dim=ns, feature_dims=rec_residue_feature_dims, sigma_embed_dim=sigma_embed_dim, lm_embedding_type=lm_embedding_type)
self.rec_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns))
self.cross_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + cross_distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns))
self.lig_distance_expansion = GaussianSmearing(0.0, lig_max_radius, distance_embed_dim)
self.rec_distance_expansion = GaussianSmearing(0.0, rec_max_radius, distance_embed_dim)
self.cross_distance_expansion = GaussianSmearing(0.0, cross_max_distance, cross_distance_embed_dim)
if use_second_order_repr:
irrep_seq = [
f'{ns}x0e',
f'{ns}x0e + {nv}x1o + {nv}x2e',
f'{ns}x0e + {nv}x1o + {nv}x2e + {nv}x1e + {nv}x2o',
f'{ns}x0e + {nv}x1o + {nv}x2e + {nv}x1e + {nv}x2o + {ns}x0o'
]
else:
irrep_seq = [
f'{ns}x0e',
f'{ns}x0e + {nv}x1o',
f'{ns}x0e + {nv}x1o + {nv}x1e',
f'{ns}x0e + {nv}x1o + {nv}x1e + {ns}x0o'
]
lig_conv_layers, rec_conv_layers, lig_to_rec_conv_layers, rec_to_lig_conv_layers = [], [], [], []
for i in range(num_conv_layers):
in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)]
out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)]
parameters = {
'in_irreps': in_irreps,
'sh_irreps': self.sh_irreps,
'out_irreps': out_irreps,
'n_edge_features': 3 * ns,
'hidden_features': 3 * ns,
'residual': False,
'batch_norm': batch_norm,
'dropout': dropout
}
lig_layer = TensorProductConvLayer(**parameters)
lig_conv_layers.append(lig_layer)
rec_layer = TensorProductConvLayer(**parameters)
rec_conv_layers.append(rec_layer)
lig_to_rec_layer = TensorProductConvLayer(**parameters)
lig_to_rec_conv_layers.append(lig_to_rec_layer)
rec_to_lig_layer = TensorProductConvLayer(**parameters)
rec_to_lig_conv_layers.append(rec_to_lig_layer)
self.lig_conv_layers = nn.ModuleList(lig_conv_layers)
self.rec_conv_layers = nn.ModuleList(rec_conv_layers)
self.lig_to_rec_conv_layers = nn.ModuleList(lig_to_rec_conv_layers)
self.rec_to_lig_conv_layers = nn.ModuleList(rec_to_lig_conv_layers)
if self.confidence_mode:
self.confidence_predictor = nn.Sequential(
nn.Linear(2*self.ns if num_conv_layers >= 3 else self.ns,ns),
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
nn.ReLU(),
nn.Dropout(confidence_dropout),
nn.Linear(ns, ns),
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
nn.ReLU(),
nn.Dropout(confidence_dropout),
nn.Linear(ns, num_confidence_outputs)
)
else:
# center of mass translation and rotation components
self.center_distance_expansion = GaussianSmearing(0.0, center_max_distance, distance_embed_dim)
self.center_edge_embedding = nn.Sequential(
nn.Linear(distance_embed_dim + sigma_embed_dim, ns),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(ns, ns)
)
self.final_conv = TensorProductConvLayer(
in_irreps=self.lig_conv_layers[-1].out_irreps,
sh_irreps=self.sh_irreps,
out_irreps=f'2x1o + 2x1e',
n_edge_features=2 * ns,
residual=False,
dropout=dropout,
batch_norm=batch_norm
)
self.tr_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1))
self.rot_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1))
if not no_torsion:
# torsion angles components
self.final_edge_embedding = nn.Sequential(
nn.Linear(distance_embed_dim, ns),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(ns, ns)
)
self.final_tp_tor = o3.FullTensorProduct(self.sh_irreps, "2e")
self.tor_bond_conv = TensorProductConvLayer(
in_irreps=self.lig_conv_layers[-1].out_irreps,
sh_irreps=self.final_tp_tor.irreps_out,
out_irreps=f'{ns}x0o + {ns}x0e',
n_edge_features=3 * ns,
residual=False,
dropout=dropout,
batch_norm=batch_norm
)
self.tor_final_layer = nn.Sequential(
nn.Linear(2 * ns, ns, bias=False),
nn.Tanh(),
nn.Dropout(dropout),
nn.Linear(ns, 1, bias=False)
)
def forward(self, data):
if not self.confidence_mode:
tr_sigma, rot_sigma, tor_sigma = self.t_to_sigma(*[data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']])
else:
tr_sigma, rot_sigma, tor_sigma = [data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']]
# build ligand graph
lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh = self.build_lig_conv_graph(data)
lig_src, lig_dst = lig_edge_index
lig_node_attr = self.lig_node_embedding(lig_node_attr)
lig_edge_attr = self.lig_edge_embedding(lig_edge_attr)
# build receptor graph
rec_node_attr, rec_edge_index, rec_edge_attr, rec_edge_sh = self.build_rec_conv_graph(data)
rec_src, rec_dst = rec_edge_index
rec_node_attr = self.rec_node_embedding(rec_node_attr)
rec_edge_attr = self.rec_edge_embedding(rec_edge_attr)
# build cross graph
if self.dynamic_max_cross:
cross_cutoff = (tr_sigma * 3 + 20).unsqueeze(1)
else:
cross_cutoff = self.cross_max_distance
cross_edge_index, cross_edge_attr, cross_edge_sh = self.build_cross_conv_graph(data, cross_cutoff)
cross_lig, cross_rec = cross_edge_index
cross_edge_attr = self.cross_edge_embedding(cross_edge_attr)
for l in range(len(self.lig_conv_layers)):
# intra graph message passing
lig_edge_attr_ = torch.cat([lig_edge_attr, lig_node_attr[lig_src, :self.ns], lig_node_attr[lig_dst, :self.ns]], -1)
lig_intra_update = self.lig_conv_layers[l](lig_node_attr, lig_edge_index, lig_edge_attr_, lig_edge_sh)
# inter graph message passing
rec_to_lig_edge_attr_ = torch.cat([cross_edge_attr, lig_node_attr[cross_lig, :self.ns], rec_node_attr[cross_rec, :self.ns]], -1)
lig_inter_update = self.rec_to_lig_conv_layers[l](rec_node_attr, cross_edge_index, rec_to_lig_edge_attr_, cross_edge_sh,
out_nodes=lig_node_attr.shape[0])
if l != len(self.lig_conv_layers) - 1:
rec_edge_attr_ = torch.cat([rec_edge_attr, rec_node_attr[rec_src, :self.ns], rec_node_attr[rec_dst, :self.ns]], -1)
rec_intra_update = self.rec_conv_layers[l](rec_node_attr, rec_edge_index, rec_edge_attr_, rec_edge_sh)
lig_to_rec_edge_attr_ = torch.cat([cross_edge_attr, lig_node_attr[cross_lig, :self.ns], rec_node_attr[cross_rec, :self.ns]], -1)
rec_inter_update = self.lig_to_rec_conv_layers[l](lig_node_attr, torch.flip(cross_edge_index, dims=[0]), lig_to_rec_edge_attr_,
cross_edge_sh, out_nodes=rec_node_attr.shape[0])
# padding original features
lig_node_attr = F.pad(lig_node_attr, (0, lig_intra_update.shape[-1] - lig_node_attr.shape[-1]))
# update features with residual updates
lig_node_attr = lig_node_attr + lig_intra_update + lig_inter_update
if l != len(self.lig_conv_layers) - 1:
rec_node_attr = F.pad(rec_node_attr, (0, rec_intra_update.shape[-1] - rec_node_attr.shape[-1]))
rec_node_attr = rec_node_attr + rec_intra_update + rec_inter_update
# compute confidence score
if self.confidence_mode:
scalar_lig_attr = torch.cat([lig_node_attr[:,:self.ns],lig_node_attr[:,-self.ns:] ], dim=1) if self.num_conv_layers >= 3 else lig_node_attr[:,:self.ns]
confidence = self.confidence_predictor(scatter_mean(scalar_lig_attr, data['ligand'].batch, dim=0)).squeeze(dim=-1)
return confidence
# compute translational and rotational score vectors
center_edge_index, center_edge_attr, center_edge_sh = self.build_center_conv_graph(data)
center_edge_attr = self.center_edge_embedding(center_edge_attr)
center_edge_attr = torch.cat([center_edge_attr, lig_node_attr[center_edge_index[0], :self.ns]], -1)
global_pred = self.final_conv(lig_node_attr, center_edge_index, center_edge_attr, center_edge_sh, out_nodes=data.num_graphs)
tr_pred = global_pred[:, :3] + global_pred[:, 6:9]
rot_pred = global_pred[:, 3:6] + global_pred[:, 9:]
data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['tr'])
# fix the magnitude of translational and rotational score vectors
tr_norm = torch.linalg.vector_norm(tr_pred, dim=1).unsqueeze(1)
tr_pred = tr_pred / tr_norm * self.tr_final_layer(torch.cat([tr_norm, data.graph_sigma_emb], dim=1))
rot_norm = torch.linalg.vector_norm(rot_pred, dim=1).unsqueeze(1)
rot_pred = rot_pred / rot_norm * self.rot_final_layer(torch.cat([rot_norm, data.graph_sigma_emb], dim=1))
if self.scale_by_sigma:
tr_pred = tr_pred / tr_sigma.unsqueeze(1)
rot_pred = rot_pred * so3.score_norm(rot_sigma.cpu()).unsqueeze(1).to(data['ligand'].x.device)
if self.no_torsion or data['ligand'].edge_mask.sum() == 0: return tr_pred, rot_pred, torch.empty(0, device=self.device)
# torsional components
tor_bonds, tor_edge_index, tor_edge_attr, tor_edge_sh = self.build_bond_conv_graph(data)
tor_bond_vec = data['ligand'].pos[tor_bonds[1]] - data['ligand'].pos[tor_bonds[0]]
tor_bond_attr = lig_node_attr[tor_bonds[0]] + lig_node_attr[tor_bonds[1]]
tor_bonds_sh = o3.spherical_harmonics("2e", tor_bond_vec, normalize=True, normalization='component')
tor_edge_sh = self.final_tp_tor(tor_edge_sh, tor_bonds_sh[tor_edge_index[0]])
tor_edge_attr = torch.cat([tor_edge_attr, lig_node_attr[tor_edge_index[1], :self.ns],
tor_bond_attr[tor_edge_index[0], :self.ns]], -1)
tor_pred = self.tor_bond_conv(lig_node_attr, tor_edge_index, tor_edge_attr, tor_edge_sh,
out_nodes=data['ligand'].edge_mask.sum(), reduce='mean')
tor_pred = self.tor_final_layer(tor_pred).squeeze(1)
edge_sigma = tor_sigma[data['ligand'].batch][data['ligand', 'ligand'].edge_index[0]][data['ligand'].edge_mask]
if self.scale_by_sigma:
tor_pred = tor_pred * torch.sqrt(torch.tensor(torus.score_norm(edge_sigma.cpu().numpy())).float()
.to(data['ligand'].x.device))
return tr_pred, rot_pred, tor_pred
def build_lig_conv_graph(self, data):
# builds the ligand graph edges and initial node and edge features
data['ligand'].node_sigma_emb = self.timestep_emb_func(data['ligand'].node_t['tr'])
# compute edges
radius_edges = radius_graph(data['ligand'].pos, self.lig_max_radius, data['ligand'].batch)
edge_index = torch.cat([data['ligand', 'ligand'].edge_index, radius_edges], 1).long()
edge_attr = torch.cat([
data['ligand', 'ligand'].edge_attr,
torch.zeros(radius_edges.shape[-1], self.in_lig_edge_features, device=data['ligand'].x.device)
], 0)
# compute initial features
edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[0].long()]
edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1)
node_attr = torch.cat([data['ligand'].x, data['ligand'].node_sigma_emb], 1)
src, dst = edge_index
edge_vec = data['ligand'].pos[dst.long()] - data['ligand'].pos[src.long()]
edge_length_emb = self.lig_distance_expansion(edge_vec.norm(dim=-1))
edge_attr = torch.cat([edge_attr, edge_length_emb], 1)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
return node_attr, edge_index, edge_attr, edge_sh
def build_rec_conv_graph(self, data):
# builds the receptor initial node and edge embeddings
data['receptor'].node_sigma_emb = self.timestep_emb_func(data['receptor'].node_t['tr']) # tr rot and tor noise is all the same
node_attr = torch.cat([data['receptor'].x, data['receptor'].node_sigma_emb], 1)
# this assumes the edges were already created in preprocessing since protein's structure is fixed
edge_index = data['receptor', 'receptor'].edge_index
src, dst = edge_index
edge_vec = data['receptor'].pos[dst.long()] - data['receptor'].pos[src.long()]
edge_length_emb = self.rec_distance_expansion(edge_vec.norm(dim=-1))
edge_sigma_emb = data['receptor'].node_sigma_emb[edge_index[0].long()]
edge_attr = torch.cat([edge_sigma_emb, edge_length_emb], 1)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
return node_attr, edge_index, edge_attr, edge_sh
def build_cross_conv_graph(self, data, cross_distance_cutoff):
# builds the cross edges between ligand and receptor
if torch.is_tensor(cross_distance_cutoff):
# different cutoff for every graph (depends on the diffusion time)
edge_index = radius(data['receptor'].pos / cross_distance_cutoff[data['receptor'].batch],
data['ligand'].pos / cross_distance_cutoff[data['ligand'].batch], 1,
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000)
else:
edge_index = radius(data['receptor'].pos, data['ligand'].pos, cross_distance_cutoff,
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000)
src, dst = edge_index
edge_vec = data['receptor'].pos[dst.long()] - data['ligand'].pos[src.long()]
edge_length_emb = self.cross_distance_expansion(edge_vec.norm(dim=-1))
edge_sigma_emb = data['ligand'].node_sigma_emb[src.long()]
edge_attr = torch.cat([edge_sigma_emb, edge_length_emb], 1)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
return edge_index, edge_attr, edge_sh
def build_center_conv_graph(self, data):
# builds the filter and edges for the convolution generating translational and rotational scores
edge_index = torch.cat([data['ligand'].batch.unsqueeze(0), torch.arange(len(data['ligand'].batch)).to(data['ligand'].x.device).unsqueeze(0)], dim=0)
center_pos, count = torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device), torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device)
center_pos.index_add_(0, index=data['ligand'].batch, source=data['ligand'].pos)
center_pos = center_pos / torch.bincount(data['ligand'].batch).unsqueeze(1)
edge_vec = data['ligand'].pos[edge_index[1]] - center_pos[edge_index[0]]
edge_attr = self.center_distance_expansion(edge_vec.norm(dim=-1))
edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[1].long()]
edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
return edge_index, edge_attr, edge_sh
def build_bond_conv_graph(self, data):
# builds the graph for the convolution between the center of the rotatable bonds and the neighbouring nodes
bonds = data['ligand', 'ligand'].edge_index[:, data['ligand'].edge_mask].long()
bond_pos = (data['ligand'].pos[bonds[0]] + data['ligand'].pos[bonds[1]]) / 2
bond_batch = data['ligand'].batch[bonds[0]]
edge_index = radius(data['ligand'].pos, bond_pos, self.lig_max_radius, batch_x=data['ligand'].batch, batch_y=bond_batch)
edge_vec = data['ligand'].pos[edge_index[1]] - bond_pos[edge_index[0]]
edge_attr = self.lig_distance_expansion(edge_vec.norm(dim=-1))
edge_attr = self.final_edge_embedding(edge_attr)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
return bonds, edge_index, edge_attr, edge_sh
class GaussianSmearing(torch.nn.Module):
# used to embed the edge distances
def __init__(self, start=0.0, stop=5.0, num_gaussians=50):
super().__init__()
offset = torch.linspace(start, stop, num_gaussians)
self.coeff = -0.5 / (offset[1] - offset[0]).item() ** 2
self.register_buffer('offset', offset)
def forward(self, dist):
dist = dist.view(-1, 1) - self.offset.view(1, -1)
return torch.exp(self.coeff * torch.pow(dist, 2))
|