Spaces:
Running
on
T4
Running
on
T4
import math | |
from e3nn import o3 | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch_cluster import radius, radius_graph | |
from torch_scatter import scatter, scatter_mean | |
import numpy as np | |
from e3nn.nn import BatchNorm | |
from utils import so3, torus | |
from datasets.process_mols import lig_feature_dims, rec_residue_feature_dims | |
class AtomEncoder(torch.nn.Module): | |
def __init__(self, emb_dim, feature_dims, sigma_embed_dim, lm_embedding_type= None): | |
# first element of feature_dims tuple is a list with the lenght of each categorical feature and the second is the number of scalar features | |
super(AtomEncoder, self).__init__() | |
self.atom_embedding_list = torch.nn.ModuleList() | |
self.num_categorical_features = len(feature_dims[0]) | |
self.num_scalar_features = feature_dims[1] + sigma_embed_dim | |
self.lm_embedding_type = lm_embedding_type | |
for i, dim in enumerate(feature_dims[0]): | |
emb = torch.nn.Embedding(dim, emb_dim) | |
torch.nn.init.xavier_uniform_(emb.weight.data) | |
self.atom_embedding_list.append(emb) | |
if self.num_scalar_features > 0: | |
self.linear = torch.nn.Linear(self.num_scalar_features, emb_dim) | |
if self.lm_embedding_type is not None: | |
if self.lm_embedding_type == 'esm': | |
self.lm_embedding_dim = 1280 | |
else: raise ValueError('LM Embedding type was not correctly determined. LM embedding type: ', self.lm_embedding_type) | |
self.lm_embedding_layer = torch.nn.Linear(self.lm_embedding_dim + emb_dim, emb_dim) | |
def forward(self, x): | |
x_embedding = 0 | |
if self.lm_embedding_type is not None: | |
assert x.shape[1] == self.num_categorical_features + self.num_scalar_features + self.lm_embedding_dim | |
else: | |
assert x.shape[1] == self.num_categorical_features + self.num_scalar_features | |
for i in range(self.num_categorical_features): | |
x_embedding += self.atom_embedding_list[i](x[:, i].long()) | |
if self.num_scalar_features > 0: | |
x_embedding += self.linear(x[:, self.num_categorical_features:self.num_categorical_features + self.num_scalar_features]) | |
if self.lm_embedding_type is not None: | |
x_embedding = self.lm_embedding_layer(torch.cat([x_embedding, x[:, -self.lm_embedding_dim:]], axis=1)) | |
return x_embedding | |
class TensorProductConvLayer(torch.nn.Module): | |
def __init__(self, in_irreps, sh_irreps, out_irreps, n_edge_features, residual=True, batch_norm=True, dropout=0.0, | |
hidden_features=None): | |
super(TensorProductConvLayer, self).__init__() | |
self.in_irreps = in_irreps | |
self.out_irreps = out_irreps | |
self.sh_irreps = sh_irreps | |
self.residual = residual | |
if hidden_features is None: | |
hidden_features = n_edge_features | |
self.tp = tp = o3.FullyConnectedTensorProduct(in_irreps, sh_irreps, out_irreps, shared_weights=False) | |
self.fc = nn.Sequential( | |
nn.Linear(n_edge_features, hidden_features), | |
nn.ReLU(), | |
nn.Dropout(dropout), | |
nn.Linear(hidden_features, tp.weight_numel) | |
) | |
self.batch_norm = BatchNorm(out_irreps) if batch_norm else None | |
def forward(self, node_attr, edge_index, edge_attr, edge_sh, out_nodes=None, reduce='mean'): | |
edge_src, edge_dst = edge_index | |
tp = self.tp(node_attr[edge_dst], edge_sh, self.fc(edge_attr)) | |
out_nodes = out_nodes or node_attr.shape[0] | |
out = scatter(tp, edge_src, dim=0, dim_size=out_nodes, reduce=reduce) | |
if self.residual: | |
padded = F.pad(node_attr, (0, out.shape[-1] - node_attr.shape[-1])) | |
out = out + padded | |
if self.batch_norm: | |
out = self.batch_norm(out) | |
return out | |
class TensorProductScoreModel(torch.nn.Module): | |
def __init__(self, t_to_sigma, device, timestep_emb_func, in_lig_edge_features=4, sigma_embed_dim=32, sh_lmax=2, | |
ns=16, nv=4, num_conv_layers=2, lig_max_radius=5, rec_max_radius=30, cross_max_distance=250, | |
center_max_distance=30, distance_embed_dim=32, cross_distance_embed_dim=32, no_torsion=False, | |
scale_by_sigma=True, use_second_order_repr=False, batch_norm=True, | |
dynamic_max_cross=False, dropout=0.0, lm_embedding_type=None, confidence_mode=False, | |
confidence_dropout=0, confidence_no_batchnorm=False, num_confidence_outputs=1): | |
super(TensorProductScoreModel, self).__init__() | |
self.t_to_sigma = t_to_sigma | |
self.in_lig_edge_features = in_lig_edge_features | |
self.sigma_embed_dim = sigma_embed_dim | |
self.lig_max_radius = lig_max_radius | |
self.rec_max_radius = rec_max_radius | |
self.cross_max_distance = cross_max_distance | |
self.dynamic_max_cross = dynamic_max_cross | |
self.center_max_distance = center_max_distance | |
self.distance_embed_dim = distance_embed_dim | |
self.cross_distance_embed_dim = cross_distance_embed_dim | |
self.sh_irreps = o3.Irreps.spherical_harmonics(lmax=sh_lmax) | |
self.ns, self.nv = ns, nv | |
self.scale_by_sigma = scale_by_sigma | |
self.device = device | |
self.no_torsion = no_torsion | |
self.timestep_emb_func = timestep_emb_func | |
self.confidence_mode = confidence_mode | |
self.num_conv_layers = num_conv_layers | |
self.lig_node_embedding = AtomEncoder(emb_dim=ns, feature_dims=lig_feature_dims, sigma_embed_dim=sigma_embed_dim) | |
self.lig_edge_embedding = nn.Sequential(nn.Linear(in_lig_edge_features + sigma_embed_dim + distance_embed_dim, ns),nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns)) | |
self.rec_node_embedding = AtomEncoder(emb_dim=ns, feature_dims=rec_residue_feature_dims, sigma_embed_dim=sigma_embed_dim, lm_embedding_type=lm_embedding_type) | |
self.rec_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns)) | |
self.cross_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + cross_distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns)) | |
self.lig_distance_expansion = GaussianSmearing(0.0, lig_max_radius, distance_embed_dim) | |
self.rec_distance_expansion = GaussianSmearing(0.0, rec_max_radius, distance_embed_dim) | |
self.cross_distance_expansion = GaussianSmearing(0.0, cross_max_distance, cross_distance_embed_dim) | |
if use_second_order_repr: | |
irrep_seq = [ | |
f'{ns}x0e', | |
f'{ns}x0e + {nv}x1o + {nv}x2e', | |
f'{ns}x0e + {nv}x1o + {nv}x2e + {nv}x1e + {nv}x2o', | |
f'{ns}x0e + {nv}x1o + {nv}x2e + {nv}x1e + {nv}x2o + {ns}x0o' | |
] | |
else: | |
irrep_seq = [ | |
f'{ns}x0e', | |
f'{ns}x0e + {nv}x1o', | |
f'{ns}x0e + {nv}x1o + {nv}x1e', | |
f'{ns}x0e + {nv}x1o + {nv}x1e + {ns}x0o' | |
] | |
lig_conv_layers, rec_conv_layers, lig_to_rec_conv_layers, rec_to_lig_conv_layers = [], [], [], [] | |
for i in range(num_conv_layers): | |
in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)] | |
out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)] | |
parameters = { | |
'in_irreps': in_irreps, | |
'sh_irreps': self.sh_irreps, | |
'out_irreps': out_irreps, | |
'n_edge_features': 3 * ns, | |
'hidden_features': 3 * ns, | |
'residual': False, | |
'batch_norm': batch_norm, | |
'dropout': dropout | |
} | |
lig_layer = TensorProductConvLayer(**parameters) | |
lig_conv_layers.append(lig_layer) | |
rec_layer = TensorProductConvLayer(**parameters) | |
rec_conv_layers.append(rec_layer) | |
lig_to_rec_layer = TensorProductConvLayer(**parameters) | |
lig_to_rec_conv_layers.append(lig_to_rec_layer) | |
rec_to_lig_layer = TensorProductConvLayer(**parameters) | |
rec_to_lig_conv_layers.append(rec_to_lig_layer) | |
self.lig_conv_layers = nn.ModuleList(lig_conv_layers) | |
self.rec_conv_layers = nn.ModuleList(rec_conv_layers) | |
self.lig_to_rec_conv_layers = nn.ModuleList(lig_to_rec_conv_layers) | |
self.rec_to_lig_conv_layers = nn.ModuleList(rec_to_lig_conv_layers) | |
if self.confidence_mode: | |
self.confidence_predictor = nn.Sequential( | |
nn.Linear(2*self.ns if num_conv_layers >= 3 else self.ns,ns), | |
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(), | |
nn.ReLU(), | |
nn.Dropout(confidence_dropout), | |
nn.Linear(ns, ns), | |
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(), | |
nn.ReLU(), | |
nn.Dropout(confidence_dropout), | |
nn.Linear(ns, num_confidence_outputs) | |
) | |
else: | |
# center of mass translation and rotation components | |
self.center_distance_expansion = GaussianSmearing(0.0, center_max_distance, distance_embed_dim) | |
self.center_edge_embedding = nn.Sequential( | |
nn.Linear(distance_embed_dim + sigma_embed_dim, ns), | |
nn.ReLU(), | |
nn.Dropout(dropout), | |
nn.Linear(ns, ns) | |
) | |
self.final_conv = TensorProductConvLayer( | |
in_irreps=self.lig_conv_layers[-1].out_irreps, | |
sh_irreps=self.sh_irreps, | |
out_irreps=f'2x1o + 2x1e', | |
n_edge_features=2 * ns, | |
residual=False, | |
dropout=dropout, | |
batch_norm=batch_norm | |
) | |
self.tr_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1)) | |
self.rot_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1)) | |
if not no_torsion: | |
# torsion angles components | |
self.final_edge_embedding = nn.Sequential( | |
nn.Linear(distance_embed_dim, ns), | |
nn.ReLU(), | |
nn.Dropout(dropout), | |
nn.Linear(ns, ns) | |
) | |
self.final_tp_tor = o3.FullTensorProduct(self.sh_irreps, "2e") | |
self.tor_bond_conv = TensorProductConvLayer( | |
in_irreps=self.lig_conv_layers[-1].out_irreps, | |
sh_irreps=self.final_tp_tor.irreps_out, | |
out_irreps=f'{ns}x0o + {ns}x0e', | |
n_edge_features=3 * ns, | |
residual=False, | |
dropout=dropout, | |
batch_norm=batch_norm | |
) | |
self.tor_final_layer = nn.Sequential( | |
nn.Linear(2 * ns, ns, bias=False), | |
nn.Tanh(), | |
nn.Dropout(dropout), | |
nn.Linear(ns, 1, bias=False) | |
) | |
def forward(self, data): | |
if not self.confidence_mode: | |
tr_sigma, rot_sigma, tor_sigma = self.t_to_sigma(*[data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']]) | |
else: | |
tr_sigma, rot_sigma, tor_sigma = [data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']] | |
# build ligand graph | |
lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh = self.build_lig_conv_graph(data) | |
lig_src, lig_dst = lig_edge_index | |
lig_node_attr = self.lig_node_embedding(lig_node_attr) | |
lig_edge_attr = self.lig_edge_embedding(lig_edge_attr) | |
# build receptor graph | |
rec_node_attr, rec_edge_index, rec_edge_attr, rec_edge_sh = self.build_rec_conv_graph(data) | |
rec_src, rec_dst = rec_edge_index | |
rec_node_attr = self.rec_node_embedding(rec_node_attr) | |
rec_edge_attr = self.rec_edge_embedding(rec_edge_attr) | |
# build cross graph | |
if self.dynamic_max_cross: | |
cross_cutoff = (tr_sigma * 3 + 20).unsqueeze(1) | |
else: | |
cross_cutoff = self.cross_max_distance | |
cross_edge_index, cross_edge_attr, cross_edge_sh = self.build_cross_conv_graph(data, cross_cutoff) | |
cross_lig, cross_rec = cross_edge_index | |
cross_edge_attr = self.cross_edge_embedding(cross_edge_attr) | |
for l in range(len(self.lig_conv_layers)): | |
# intra graph message passing | |
lig_edge_attr_ = torch.cat([lig_edge_attr, lig_node_attr[lig_src, :self.ns], lig_node_attr[lig_dst, :self.ns]], -1) | |
lig_intra_update = self.lig_conv_layers[l](lig_node_attr, lig_edge_index, lig_edge_attr_, lig_edge_sh) | |
# inter graph message passing | |
rec_to_lig_edge_attr_ = torch.cat([cross_edge_attr, lig_node_attr[cross_lig, :self.ns], rec_node_attr[cross_rec, :self.ns]], -1) | |
lig_inter_update = self.rec_to_lig_conv_layers[l](rec_node_attr, cross_edge_index, rec_to_lig_edge_attr_, cross_edge_sh, | |
out_nodes=lig_node_attr.shape[0]) | |
if l != len(self.lig_conv_layers) - 1: | |
rec_edge_attr_ = torch.cat([rec_edge_attr, rec_node_attr[rec_src, :self.ns], rec_node_attr[rec_dst, :self.ns]], -1) | |
rec_intra_update = self.rec_conv_layers[l](rec_node_attr, rec_edge_index, rec_edge_attr_, rec_edge_sh) | |
lig_to_rec_edge_attr_ = torch.cat([cross_edge_attr, lig_node_attr[cross_lig, :self.ns], rec_node_attr[cross_rec, :self.ns]], -1) | |
rec_inter_update = self.lig_to_rec_conv_layers[l](lig_node_attr, torch.flip(cross_edge_index, dims=[0]), lig_to_rec_edge_attr_, | |
cross_edge_sh, out_nodes=rec_node_attr.shape[0]) | |
# padding original features | |
lig_node_attr = F.pad(lig_node_attr, (0, lig_intra_update.shape[-1] - lig_node_attr.shape[-1])) | |
# update features with residual updates | |
lig_node_attr = lig_node_attr + lig_intra_update + lig_inter_update | |
if l != len(self.lig_conv_layers) - 1: | |
rec_node_attr = F.pad(rec_node_attr, (0, rec_intra_update.shape[-1] - rec_node_attr.shape[-1])) | |
rec_node_attr = rec_node_attr + rec_intra_update + rec_inter_update | |
# compute confidence score | |
if self.confidence_mode: | |
scalar_lig_attr = torch.cat([lig_node_attr[:,:self.ns],lig_node_attr[:,-self.ns:] ], dim=1) if self.num_conv_layers >= 3 else lig_node_attr[:,:self.ns] | |
confidence = self.confidence_predictor(scatter_mean(scalar_lig_attr, data['ligand'].batch, dim=0)).squeeze(dim=-1) | |
return confidence | |
# compute translational and rotational score vectors | |
center_edge_index, center_edge_attr, center_edge_sh = self.build_center_conv_graph(data) | |
center_edge_attr = self.center_edge_embedding(center_edge_attr) | |
center_edge_attr = torch.cat([center_edge_attr, lig_node_attr[center_edge_index[0], :self.ns]], -1) | |
global_pred = self.final_conv(lig_node_attr, center_edge_index, center_edge_attr, center_edge_sh, out_nodes=data.num_graphs) | |
tr_pred = global_pred[:, :3] + global_pred[:, 6:9] | |
rot_pred = global_pred[:, 3:6] + global_pred[:, 9:] | |
data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['tr']) | |
# fix the magnitude of translational and rotational score vectors | |
tr_norm = torch.linalg.vector_norm(tr_pred, dim=1).unsqueeze(1) | |
tr_pred = tr_pred / tr_norm * self.tr_final_layer(torch.cat([tr_norm, data.graph_sigma_emb], dim=1)) | |
rot_norm = torch.linalg.vector_norm(rot_pred, dim=1).unsqueeze(1) | |
rot_pred = rot_pred / rot_norm * self.rot_final_layer(torch.cat([rot_norm, data.graph_sigma_emb], dim=1)) | |
if self.scale_by_sigma: | |
tr_pred = tr_pred / tr_sigma.unsqueeze(1) | |
rot_pred = rot_pred * so3.score_norm(rot_sigma.cpu()).unsqueeze(1).to(data['ligand'].x.device) | |
if self.no_torsion or data['ligand'].edge_mask.sum() == 0: return tr_pred, rot_pred, torch.empty(0, device=self.device) | |
# torsional components | |
tor_bonds, tor_edge_index, tor_edge_attr, tor_edge_sh = self.build_bond_conv_graph(data) | |
tor_bond_vec = data['ligand'].pos[tor_bonds[1]] - data['ligand'].pos[tor_bonds[0]] | |
tor_bond_attr = lig_node_attr[tor_bonds[0]] + lig_node_attr[tor_bonds[1]] | |
tor_bonds_sh = o3.spherical_harmonics("2e", tor_bond_vec, normalize=True, normalization='component') | |
tor_edge_sh = self.final_tp_tor(tor_edge_sh, tor_bonds_sh[tor_edge_index[0]]) | |
tor_edge_attr = torch.cat([tor_edge_attr, lig_node_attr[tor_edge_index[1], :self.ns], | |
tor_bond_attr[tor_edge_index[0], :self.ns]], -1) | |
tor_pred = self.tor_bond_conv(lig_node_attr, tor_edge_index, tor_edge_attr, tor_edge_sh, | |
out_nodes=data['ligand'].edge_mask.sum(), reduce='mean') | |
tor_pred = self.tor_final_layer(tor_pred).squeeze(1) | |
edge_sigma = tor_sigma[data['ligand'].batch][data['ligand', 'ligand'].edge_index[0]][data['ligand'].edge_mask] | |
if self.scale_by_sigma: | |
tor_pred = tor_pred * torch.sqrt(torch.tensor(torus.score_norm(edge_sigma.cpu().numpy())).float() | |
.to(data['ligand'].x.device)) | |
return tr_pred, rot_pred, tor_pred | |
def build_lig_conv_graph(self, data): | |
# builds the ligand graph edges and initial node and edge features | |
data['ligand'].node_sigma_emb = self.timestep_emb_func(data['ligand'].node_t['tr']) | |
# compute edges | |
radius_edges = radius_graph(data['ligand'].pos, self.lig_max_radius, data['ligand'].batch) | |
edge_index = torch.cat([data['ligand', 'ligand'].edge_index, radius_edges], 1).long() | |
edge_attr = torch.cat([ | |
data['ligand', 'ligand'].edge_attr, | |
torch.zeros(radius_edges.shape[-1], self.in_lig_edge_features, device=data['ligand'].x.device) | |
], 0) | |
# compute initial features | |
edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[0].long()] | |
edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1) | |
node_attr = torch.cat([data['ligand'].x, data['ligand'].node_sigma_emb], 1) | |
src, dst = edge_index | |
edge_vec = data['ligand'].pos[dst.long()] - data['ligand'].pos[src.long()] | |
edge_length_emb = self.lig_distance_expansion(edge_vec.norm(dim=-1)) | |
edge_attr = torch.cat([edge_attr, edge_length_emb], 1) | |
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') | |
return node_attr, edge_index, edge_attr, edge_sh | |
def build_rec_conv_graph(self, data): | |
# builds the receptor initial node and edge embeddings | |
data['receptor'].node_sigma_emb = self.timestep_emb_func(data['receptor'].node_t['tr']) # tr rot and tor noise is all the same | |
node_attr = torch.cat([data['receptor'].x, data['receptor'].node_sigma_emb], 1) | |
# this assumes the edges were already created in preprocessing since protein's structure is fixed | |
edge_index = data['receptor', 'receptor'].edge_index | |
src, dst = edge_index | |
edge_vec = data['receptor'].pos[dst.long()] - data['receptor'].pos[src.long()] | |
edge_length_emb = self.rec_distance_expansion(edge_vec.norm(dim=-1)) | |
edge_sigma_emb = data['receptor'].node_sigma_emb[edge_index[0].long()] | |
edge_attr = torch.cat([edge_sigma_emb, edge_length_emb], 1) | |
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') | |
return node_attr, edge_index, edge_attr, edge_sh | |
def build_cross_conv_graph(self, data, cross_distance_cutoff): | |
# builds the cross edges between ligand and receptor | |
if torch.is_tensor(cross_distance_cutoff): | |
# different cutoff for every graph (depends on the diffusion time) | |
edge_index = radius(data['receptor'].pos / cross_distance_cutoff[data['receptor'].batch], | |
data['ligand'].pos / cross_distance_cutoff[data['ligand'].batch], 1, | |
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000) | |
else: | |
edge_index = radius(data['receptor'].pos, data['ligand'].pos, cross_distance_cutoff, | |
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000) | |
src, dst = edge_index | |
edge_vec = data['receptor'].pos[dst.long()] - data['ligand'].pos[src.long()] | |
edge_length_emb = self.cross_distance_expansion(edge_vec.norm(dim=-1)) | |
edge_sigma_emb = data['ligand'].node_sigma_emb[src.long()] | |
edge_attr = torch.cat([edge_sigma_emb, edge_length_emb], 1) | |
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') | |
return edge_index, edge_attr, edge_sh | |
def build_center_conv_graph(self, data): | |
# builds the filter and edges for the convolution generating translational and rotational scores | |
edge_index = torch.cat([data['ligand'].batch.unsqueeze(0), torch.arange(len(data['ligand'].batch)).to(data['ligand'].x.device).unsqueeze(0)], dim=0) | |
center_pos, count = torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device), torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device) | |
center_pos.index_add_(0, index=data['ligand'].batch, source=data['ligand'].pos) | |
center_pos = center_pos / torch.bincount(data['ligand'].batch).unsqueeze(1) | |
edge_vec = data['ligand'].pos[edge_index[1]] - center_pos[edge_index[0]] | |
edge_attr = self.center_distance_expansion(edge_vec.norm(dim=-1)) | |
edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[1].long()] | |
edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1) | |
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') | |
return edge_index, edge_attr, edge_sh | |
def build_bond_conv_graph(self, data): | |
# builds the graph for the convolution between the center of the rotatable bonds and the neighbouring nodes | |
bonds = data['ligand', 'ligand'].edge_index[:, data['ligand'].edge_mask].long() | |
bond_pos = (data['ligand'].pos[bonds[0]] + data['ligand'].pos[bonds[1]]) / 2 | |
bond_batch = data['ligand'].batch[bonds[0]] | |
edge_index = radius(data['ligand'].pos, bond_pos, self.lig_max_radius, batch_x=data['ligand'].batch, batch_y=bond_batch) | |
edge_vec = data['ligand'].pos[edge_index[1]] - bond_pos[edge_index[0]] | |
edge_attr = self.lig_distance_expansion(edge_vec.norm(dim=-1)) | |
edge_attr = self.final_edge_embedding(edge_attr) | |
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') | |
return bonds, edge_index, edge_attr, edge_sh | |
class GaussianSmearing(torch.nn.Module): | |
# used to embed the edge distances | |
def __init__(self, start=0.0, stop=5.0, num_gaussians=50): | |
super().__init__() | |
offset = torch.linspace(start, stop, num_gaussians) | |
self.coeff = -0.5 / (offset[1] - offset[0]).item() ** 2 | |
self.register_buffer('offset', offset) | |
def forward(self, dist): | |
dist = dist.view(-1, 1) - self.offset.view(1, -1) | |
return torch.exp(self.coeff * torch.pow(dist, 2)) | |