Spaces:
Sleeping
Sleeping
import math | |
import torch | |
def quaternion_to_matrix(quaternions): | |
""" | |
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html | |
Convert rotations given as quaternions to rotation matrices. | |
Args: | |
quaternions: quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
r, i, j, k = torch.unbind(quaternions, -1) | |
two_s = 2.0 / (quaternions * quaternions).sum(-1) | |
o = torch.stack( | |
( | |
1 - two_s * (j * j + k * k), | |
two_s * (i * j - k * r), | |
two_s * (i * k + j * r), | |
two_s * (i * j + k * r), | |
1 - two_s * (i * i + k * k), | |
two_s * (j * k - i * r), | |
two_s * (i * k - j * r), | |
two_s * (j * k + i * r), | |
1 - two_s * (i * i + j * j), | |
), | |
-1, | |
) | |
return o.reshape(quaternions.shape[:-1] + (3, 3)) | |
def axis_angle_to_quaternion(axis_angle): | |
""" | |
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html | |
Convert rotations given as axis/angle to quaternions. | |
Args: | |
axis_angle: Rotations given as a vector in axis angle form, | |
as a tensor of shape (..., 3), where the magnitude is | |
the angle turned anticlockwise in radians around the | |
vector's direction. | |
Returns: | |
quaternions with real part first, as tensor of shape (..., 4). | |
""" | |
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) | |
half_angles = 0.5 * angles | |
eps = 1e-6 | |
small_angles = angles.abs() < eps | |
sin_half_angles_over_angles = torch.empty_like(angles) | |
sin_half_angles_over_angles[~small_angles] = ( | |
torch.sin(half_angles[~small_angles]) / angles[~small_angles] | |
) | |
# for x small, sin(x/2) is about x/2 - (x/2)^3/6 | |
# so sin(x/2)/x is about 1/2 - (x*x)/48 | |
sin_half_angles_over_angles[small_angles] = ( | |
0.5 - (angles[small_angles] * angles[small_angles]) / 48 | |
) | |
quaternions = torch.cat( | |
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 | |
) | |
return quaternions | |
def axis_angle_to_matrix(axis_angle): | |
""" | |
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html | |
Convert rotations given as axis/angle to rotation matrices. | |
Args: | |
axis_angle: Rotations given as a vector in axis angle form, | |
as a tensor of shape (..., 3), where the magnitude is | |
the angle turned anticlockwise in radians around the | |
vector's direction. | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) | |
def rigid_transform_Kabsch_3D_torch(A, B): | |
# R = 3x3 rotation matrix, t = 3x1 column vector | |
# This already takes residue identity into account. | |
assert A.shape[1] == B.shape[1] | |
num_rows, num_cols = A.shape | |
if num_rows != 3: | |
raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}") | |
num_rows, num_cols = B.shape | |
if num_rows != 3: | |
raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}") | |
# find mean column wise: 3 x 1 | |
centroid_A = torch.mean(A, axis=1, keepdims=True) | |
centroid_B = torch.mean(B, axis=1, keepdims=True) | |
# subtract mean | |
Am = A - centroid_A | |
Bm = B - centroid_B | |
H = Am @ Bm.T | |
# find rotation | |
U, S, Vt = torch.linalg.svd(H) | |
R = Vt.T @ U.T | |
# special reflection case | |
if torch.linalg.det(R) < 0: | |
# print("det(R) < R, reflection detected!, correcting for it ...") | |
SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device)) | |
R = (Vt.T @ SS) @ U.T | |
assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 # note I had to change this error bound to be higher | |
t = -R @ centroid_A + centroid_B | |
return R, t | |