sivan22
commited on
Commit
โข
13791ef
1
Parent(s):
6fb1bed
fdsf
Browse files- App.py +100 -0
- __init__.py +13 -0
- requirements.txt +9 -0
- run.bat +2 -0
- utils.py +28 -0
App.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit.logger import get_logger
|
3 |
+
import datasets
|
4 |
+
import pandas as pd
|
5 |
+
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain_openai import ChatOpenAI
|
7 |
+
from langchain_core.prompts import PromptTemplate
|
8 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
9 |
+
from sentence_transformers import util
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
LOGGER = get_logger(__name__)
|
14 |
+
|
15 |
+
|
16 |
+
@st.cache_data
|
17 |
+
def get_df() ->object:
|
18 |
+
ds = datasets.load_dataset('sivan22/yalkut-yosef-embeddings')
|
19 |
+
df = pd.DataFrame.from_dict(ds['train'])
|
20 |
+
return df
|
21 |
+
|
22 |
+
@st.cache_resource
|
23 |
+
def get_model()->object:
|
24 |
+
model_name = "intfloat/multilingual-e5-large"
|
25 |
+
model_kwargs = {'device': 'cpu'} #'cpu' or 'cuda'
|
26 |
+
encode_kwargs = {'normalize_embeddings': False}
|
27 |
+
embeddings_model = HuggingFaceEmbeddings(
|
28 |
+
model_name=model_name,
|
29 |
+
model_kwargs=model_kwargs,
|
30 |
+
encode_kwargs=encode_kwargs
|
31 |
+
)
|
32 |
+
return embeddings_model
|
33 |
+
|
34 |
+
@st.cache_resource
|
35 |
+
def get_chat_api(api_key:str):
|
36 |
+
chat = ChatOpenAI(model="gpt-3.5-turbo-16k", api_key=api_key)
|
37 |
+
return chat
|
38 |
+
|
39 |
+
|
40 |
+
def get_results(embeddings_model,input,df,num_of_results) -> pd.DataFrame:
|
41 |
+
embeddings = embeddings_model.embed_query('query: '+ input)
|
42 |
+
df['similarity'] = df['embeddings'].apply(lambda x: util.dot_score(x,embeddings))
|
43 |
+
results = df.sort_values(by='similarity', ascending=False)
|
44 |
+
return results.head(num_of_results)
|
45 |
+
|
46 |
+
def get_llm_results(query,chat,results):
|
47 |
+
|
48 |
+
prompt_template = PromptTemplate.from_template(
|
49 |
+
"""
|
50 |
+
the question is: {query}
|
51 |
+
the possible answers are:
|
52 |
+
{answers}
|
53 |
+
|
54 |
+
""" )
|
55 |
+
|
56 |
+
messages = [
|
57 |
+
SystemMessage(content="You're a helpful assistant. given a question, filter and sort the possible answers to the given question by relevancy, drop the irrelevant answers and return the results in the following JSON format (scores are between 0 and 1): {\"answer\": \"score\", \"answer\": \"score\"}. "),
|
58 |
+
HumanMessage(content=prompt_template.format(query=query, answers=str.join('\n', results['text'].head(10).tolist()))),
|
59 |
+
]
|
60 |
+
|
61 |
+
response = chat.invoke(messages)
|
62 |
+
llm_results_df = pd.read_json(response.content, orient='index')
|
63 |
+
return llm_results_df
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
def run():
|
68 |
+
|
69 |
+
st.set_page_config(
|
70 |
+
page_title=" ืืืคืืฉ ืกืื ืื ืืืืงืื ืืืกืฃ",
|
71 |
+
page_icon="๐",
|
72 |
+
layout="wide",
|
73 |
+
initial_sidebar_state="expanded"
|
74 |
+
)
|
75 |
+
|
76 |
+
st.write("ืืืคืืฉ ืืื ืืกืคืจ ืืืงืื ืืืกืฃ ืงืืฆืืจ ืฉืืืื ืขืจืื")
|
77 |
+
|
78 |
+
embeddings_model = get_model()
|
79 |
+
df = get_df()
|
80 |
+
|
81 |
+
user_input = st.text_input('ืืชืื ืืื ืืช ืฉืืืชื', placeholder='ืืื ื ืจืืช ืืืืืงืื ืืื ืืืื ืืืืืืช ืืื ืืื')
|
82 |
+
num_of_results = st.sidebar.slider('ืืกืคืจ ืืชืืฆืืืช ืฉืืจืฆืื ื ืืืฆืื:',1,25,5)
|
83 |
+
use_llm = st.sidebar.checkbox("ืืฉืชืืฉ ืืืืื ืฉืคื ืืื ืืฉืคืจ ืชืืฆืืืช", False)
|
84 |
+
openAikey = st.sidebar.text_input("OpenAI API key", type="password")
|
85 |
+
|
86 |
+
if (st.button('ืืคืฉ') or user_input) and user_input!="":
|
87 |
+
|
88 |
+
results = get_results(embeddings_model,user_input,df,num_of_results)
|
89 |
+
|
90 |
+
if use_llm:
|
91 |
+
chat = get_chat_api(openAikey)
|
92 |
+
llm_results = get_llm_results(user_input,chat,results)
|
93 |
+
st.write(llm_results)
|
94 |
+
|
95 |
+
else:
|
96 |
+
st.write(results[['siman','sek','text']].head(10))
|
97 |
+
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
run()
|
__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Streamlit Inc. (2018-2022) Snowflake Inc. (2022)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
streamlit
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
datasets
|
6 |
+
langchain_huggingface
|
7 |
+
langchain_openai
|
8 |
+
langchain
|
9 |
+
sentence_transformers
|
run.bat
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pip install -r requirements.txt
|
2 |
+
streamlit run app.py
|
utils.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Streamlit Inc. (2018-2022) Snowflake Inc. (2022)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
import textwrap
|
17 |
+
|
18 |
+
import streamlit as st
|
19 |
+
|
20 |
+
|
21 |
+
def show_code(demo):
|
22 |
+
"""Showing the code of the demo."""
|
23 |
+
show_code = st.sidebar.checkbox("Show code", True)
|
24 |
+
if show_code:
|
25 |
+
# Showing the code of the demo.
|
26 |
+
st.markdown("## Code")
|
27 |
+
sourcelines, _ = inspect.getsourcelines(demo)
|
28 |
+
st.code(textwrap.dedent("".join(sourcelines[1:])))
|