Created gradio implementation of the example.
Browse files- app.py +62 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Gradio Implementation: Lenix Carter
|
2 |
+
# License: BSD 3-Clause or CC-0
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
from sklearn.cluster import kmeans_plusplus
|
8 |
+
from sklearn.datasets import make_blobs
|
9 |
+
|
10 |
+
plt.switch_backend("agg")
|
11 |
+
|
12 |
+
def initial_points(n_samples, n_components, clst_std, n_clust):
|
13 |
+
plt.clf()
|
14 |
+
# Generate sample data
|
15 |
+
|
16 |
+
X, y_true = make_blobs(
|
17 |
+
n_samples=n_samples, centers=n_components, cluster_std=clst_std, random_state=0
|
18 |
+
)
|
19 |
+
X = X[:, ::-1]
|
20 |
+
|
21 |
+
# Calculate seeds from k-means++
|
22 |
+
centers_init, indices = kmeans_plusplus(X, n_clusters=n_clust, random_state=0)
|
23 |
+
|
24 |
+
# Plot init seeds along side sample data
|
25 |
+
plt.figure(1)
|
26 |
+
|
27 |
+
for k in range(n_components):
|
28 |
+
cluster_data = y_true == k
|
29 |
+
plt.scatter(X[cluster_data, 0], X[cluster_data, 1], marker=".", s=10)
|
30 |
+
|
31 |
+
plt.scatter(centers_init[:, 0], centers_init[:, 1], c="b", s=50)
|
32 |
+
plt.title("K-Means++ Initialization")
|
33 |
+
plt.xticks([])
|
34 |
+
plt.yticks([])
|
35 |
+
return plt
|
36 |
+
|
37 |
+
title = "An example of K-Means++ Initialization"
|
38 |
+
with gr.Blocks() as demo:
|
39 |
+
gr.Markdown(f" # {title}")
|
40 |
+
gr.Markdown("""
|
41 |
+
This example shows the ouput of the K-Means++ function.
|
42 |
+
|
43 |
+
This is based on the example [here](https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_plusplus.html#sphx-glr-auto-examples-cluster-plot-kmeans-plusplus-py).
|
44 |
+
""")
|
45 |
+
with gr.Row():
|
46 |
+
with gr.Column():
|
47 |
+
n_samples = gr.Slider(100, 4000, 1000, label="Number of Samples")
|
48 |
+
n_components = gr.Slider(1, 10, 4, step=1, label="Number of blobs")
|
49 |
+
clst_std = gr.Slider(.1, 1, .6, label="Blob Standard Deviation")
|
50 |
+
n_clusters = gr.Slider(1, 10, 4, step=1, label="Number of Clusters to Initialize")
|
51 |
+
btn = gr.Button(label="Run")
|
52 |
+
with gr.Column():
|
53 |
+
graph_points = gr.Plot(label="K-Means++ Initial Points")
|
54 |
+
btn.click(
|
55 |
+
fn=initial_points,
|
56 |
+
inputs=[n_samples, n_components, clst_std, n_clusters],
|
57 |
+
outputs=[graph_points]
|
58 |
+
)
|
59 |
+
|
60 |
+
if __name__ == '__main__':
|
61 |
+
demo.launch()
|
62 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
matplotlib==3.6.3
|
2 |
+
scikit-learn==1.2.2
|