File size: 8,160 Bytes
fa42857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39dbd76
fa42857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Gradio Implementation: Lenix Carter
# License: BSD 3-Clause or CC-0

import warnings

import gradio as gr
import numpy as np
import matplotlib
import matplotlib.pyplot as plt

from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn import datasets
from sklearn.exceptions import ConvergenceWarning

plt.switch_backend('agg')

# different learning rate schedules and momentum parameters
params = [
    {
        "solver": "sgd",
        "learning_rate": "constant",
        "momentum": 0,
        "learning_rate_init": 0.2,
    },
    {
        "solver": "sgd",
        "learning_rate": "constant",
        "momentum": 0.9,
        "nesterovs_momentum": False,
        "learning_rate_init": 0.2,
    },
    {
        "solver": "sgd",
        "learning_rate": "constant",
        "momentum": 0.9,
        "nesterovs_momentum": True,
        "learning_rate_init": 0.2,
    },
    {
        "solver": "sgd",
        "learning_rate": "invscaling",
        "momentum": 0,
        "learning_rate_init": 0.2,
    },
    {
        "solver": "sgd",
        "learning_rate": "invscaling",
        "momentum": 0.9,
        "nesterovs_momentum": True,
        "learning_rate_init": 0.2,
    },
    {
        "solver": "sgd",
        "learning_rate": "invscaling",
        "momentum": 0.9,
        "nesterovs_momentum": False,
        "learning_rate_init": 0.2,
    },
    {"solver": "adam", "learning_rate_init": 0.01},
]

labels = [
    "constant learning-rate",
    "constant with momentum",
    "constant with Nesterov's momentum",
    "inv-scaling learning-rate",
    "inv-scaling with momentum",
    "inv-scaling with Nesterov's momentum",
    "adam",
]

plot_args = [
    {"c": "red", "linestyle": "-"},
    {"c": "green", "linestyle": "-"},
    {"c": "blue", "linestyle": "-"},
    {"c": "red", "linestyle": "--"},
    {"c": "green", "linestyle": "--"},
    {"c": "blue", "linestyle": "--"},
    {"c": "black", "linestyle": "-"},
]

# load / generate some toy datasets
iris = datasets.load_iris()
X_digits, y_digits = datasets.load_digits(return_X_y=True)
data_sets = [
    (iris.data, iris.target),
    (X_digits, y_digits),
    datasets.make_circles(noise=0.2, factor=0.5, random_state=1),
    datasets.make_moons(noise=0.3, random_state=0),
]

def run_mlp(dataset, models, clr_lr,
                             cwm_lr, cwm_mom,
                             nest_lr, nest_mom,
                             inv_lr,
                             iwm_lr, iwm_mom,
                             invN_lr, invN_mom,
                             adam_lr):
    plt.clf()       
    new_params = [
            {"learning_rate_init": clr_lr},
            {"learning_rate_init": cwm_lr,
             "momentum": cwm_mom},
            {"learning_rate_init": nest_lr,
             "momentum": nest_mom},
            {"learning_rate_init": inv_lr},
            {"learning_rate_init": iwm_lr,
             "momentum": iwm_mom},
            {"learning_rate_init": invN_lr,
             "momentum": invN_mom},
            {"learning_rate_init": adam_lr}
    ]
    for (param, new_param) in zip(params, new_params):
        param.update(new_param)

    iris = datasets.load_iris()
    X_digits, y_digits = datasets.load_digits(return_X_y=True)
    data_sets = [
        (iris.data, iris.target),
        (X_digits, y_digits),
        datasets.make_circles(noise=0.2, factor=0.5, random_state=1),
        datasets.make_moons(noise=0.3, random_state=0),
    ]
    name = ["Iris", "Digits", "Circles", "Moons"]

    return plot_on_dataset(*data_sets[dataset], models, name[dataset])

def plot_on_dataset(X, y, models, name):
    # for each dataset, plot learning for each learning strategy
    print("\nlearning on dataset %s" % name)

    X = MinMaxScaler().fit_transform(X)
    mlps = []
    if name == "Digits":
        # digits is larger but converges fairly quickly
        max_iter = 15
    else:
        max_iter = 400

    for model in models:
        label = labels[model]
        param = params[model]
        print("training: %s" % label)
        mlp = MLPClassifier(random_state=0, max_iter=max_iter, **param)

        # some parameter combinations will not converge as can be seen on the
        # plots so they are ignored here
        with warnings.catch_warnings():
            warnings.filterwarnings(
                "ignore", category=ConvergenceWarning, module="sklearn"
            )
            mlp.fit(X, y)

        mlps.append(mlp)
        print("Training set score: %f" % mlp.score(X, y))
        print("Training set loss: %f" % mlp.loss_)

        print(label)
        plt.plot(mlp.loss_curve_, label=label, **plot_args[model])

    plt.legend(loc="upper right")
    
    return plt

title = "Compare Stochastic learning strategies for MLPClassifier"
with gr.Blocks() as demo:
    gr.Markdown(f" # {title}")
    gr.Markdown("""
                This example demonstrates different stochastic learning strategies on the MLP Classifier. You may also tweak some parameters of the learning strategies.

                This is based on the example [here](https://scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_training_curves.html#sphx-glr-auto-examples-neural-networks-plot-mlp-training-curves-py)
                """)
    with gr.Tabs():
        with gr.TabItem("Model and Data Selection"):
            with gr.Row():
                dataset = gr.Dropdown(["Iris", "Digits", "Circles", "Moons"],
                                      value="Iris",
                                      type="index")
                models = gr.CheckboxGroup(["Constant Learning-Rate",
                                           "Constant with Momentum",
                                           "Constant with Nesterov's Momentum",
                                           "Inverse Scaling Learning-Rate",
                                           "Inverse Scaling with Momentum",
                                           "Inverse Scaling with Nesterov's Momentum",
                                           "Adam"],
                                          label="Stochastic Learning Strategy",
                                          type="index")
        with gr.TabItem("Model Tuning"):
            with gr.Accordion("Constant Learning-Rate", open=False):
                clr_lr = gr.Slider(0.01, 1.00, .2, label="Learning Rate")
            with gr.Accordion("Constant with Momentum", open=False):
                cwm_lr = gr.Slider(0.01, 1.00, .2, label="Learning Rate")
                cwm_mom = gr.Slider(0.01, 1.00, 0.9, label="Momentum")
            with gr.Accordion("Constant with Nesterov's Momentum", open=False):
                nest_lr = gr.Slider(0.01, 1.00, .2, label="Learning Rate")
                nest_mom = gr.Slider(0.01, 1.00, 0.9, label="Momentum")
            with gr.Accordion("Inverse Scaling Learning-Rate", open=False):
                inv_lr = gr.Slider(0.01, 1.00, .2, label="Learning Rate")
            with gr.Accordion("Inverse Scaling with Momentum", open=False):
                iwm_lr = gr.Slider(0.01, 1.00, .2, label="Learning Rate")
                iwm_mom = gr.Slider(0.01, 1.00, 0.9, label="Momentum")
            with gr.Accordion("Inverse Scaling with Nesterov's Momentum", open=False):
                invN_lr = gr.Slider(0.01, 1.00, .2, label="Learning Rate")
                invN_mom = gr.Slider(0.01, 1.00, 0.9, label="Momentum")
            with gr.Accordion("Adam", open=False):
                adam_lr = gr.Slider(0.001, 1.00, 0.01, label="Learning Rate")

    btn = gr.Button(label="Run")
    stoch_graph = gr.Plot(label="Stochastic Learning Strategies")
    btn.click(
            fn=run_mlp,
            inputs=[dataset, models,
                    clr_lr,
                    cwm_lr,
                    cwm_mom,
                    nest_lr,
                    nest_mom,
                    inv_lr,
                    iwm_lr,
                    iwm_mom,
                    invN_lr,
                    invN_mom,
                    adam_lr],
            outputs=[stoch_graph]
            )

if __name__ == '__main__':
    demo.launch()