Built Gradio implementation of the example.
Browse files- app.py +99 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Gradio Implementation: Lenix Carter
|
2 |
+
# License: BSD 3-Clause or CC-0
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
from sklearn import datasets
|
10 |
+
from sklearn.model_selection import train_test_split
|
11 |
+
from sklearn.decomposition import PCA
|
12 |
+
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
|
13 |
+
from sklearn.neighbors import KNeighborsClassifier, NeighborhoodComponentsAnalysis
|
14 |
+
from sklearn.pipeline import make_pipeline
|
15 |
+
from sklearn.preprocessing import StandardScaler
|
16 |
+
|
17 |
+
matplotlib.use('agg')
|
18 |
+
|
19 |
+
def reduce_dimensions(n_neighbors, random_state):
|
20 |
+
# Load Digits dataset
|
21 |
+
X, y = datasets.load_digits(return_X_y=True)
|
22 |
+
|
23 |
+
# Split into train/test
|
24 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
25 |
+
X, y, test_size=0.5, stratify=y, random_state=random_state
|
26 |
+
)
|
27 |
+
|
28 |
+
dim = len(X[0])
|
29 |
+
n_classes = len(np.unique(y))
|
30 |
+
|
31 |
+
# Reduce dimension to 2 with PCA
|
32 |
+
pca = make_pipeline(StandardScaler(), PCA(n_components=2, random_state=random_state))
|
33 |
+
|
34 |
+
# Reduce dimension to 2 with LinearDiscriminantAnalysis
|
35 |
+
lda = make_pipeline(StandardScaler(), LinearDiscriminantAnalysis(n_components=2))
|
36 |
+
|
37 |
+
# Reduce dimension to 2 with NeighborhoodComponentAnalysis
|
38 |
+
nca = make_pipeline(
|
39 |
+
StandardScaler(),
|
40 |
+
NeighborhoodComponentsAnalysis(n_components=2, random_state=random_state),
|
41 |
+
)
|
42 |
+
|
43 |
+
# Use a nearest neighbor classifier to evaluate the methods
|
44 |
+
knn = KNeighborsClassifier(n_neighbors=n_neighbors)
|
45 |
+
|
46 |
+
# Make a list of the methods to be compared
|
47 |
+
dim_reduction_methods = [("PCA", pca), ("LDA", lda), ("NCA", nca)]
|
48 |
+
|
49 |
+
dim_red_graphs = []
|
50 |
+
|
51 |
+
for i, (name, model) in enumerate(dim_reduction_methods):
|
52 |
+
new = plt.figure()
|
53 |
+
|
54 |
+
# Fit the method's model
|
55 |
+
model.fit(X_train, y_train)
|
56 |
+
|
57 |
+
# Fit a nearest neighbor classifier on the embedded training set
|
58 |
+
knn.fit(model.transform(X_train), y_train)
|
59 |
+
|
60 |
+
# Compute the nearest neighbor accuracy on the embedded test set
|
61 |
+
acc_knn = knn.score(model.transform(X_test), y_test)
|
62 |
+
|
63 |
+
# Embed the data set in 2 dimensions using the fitted model
|
64 |
+
X_embedded = model.transform(X)
|
65 |
+
|
66 |
+
# Plot the projected points and show the evaluation score
|
67 |
+
plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=y, s=30, cmap="Set1")
|
68 |
+
plt.title(
|
69 |
+
"{}, KNN (k={})\nTest accuracy = {:.2f}".format(name, n_neighbors, acc_knn)
|
70 |
+
)
|
71 |
+
dim_red_graphs.append(new)
|
72 |
+
return dim_red_graphs
|
73 |
+
|
74 |
+
title = "Dimensionality Reduction with Neighborhood Components Analysis"
|
75 |
+
with gr.Blocks() as demo:
|
76 |
+
gr.Markdown(f" # {title}")
|
77 |
+
gr.Markdown("""
|
78 |
+
This example performs and displays the results of Principal Component Analysis, Linear Descriminant Analysis, and Neighborhood Component Analysis on the Digits dataset.
|
79 |
+
|
80 |
+
The result shows that NCA produces visually meaningful clustering.
|
81 |
+
|
82 |
+
This based on the example [here](https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_dim_reduction.html#sphx-glr-auto-examples-neighbors-plot-nca-dim-reduction-py)
|
83 |
+
""")
|
84 |
+
n_neighbors = gr.Slider(2, 10, 3, step=1, label="Number of Neighbors for KNN")
|
85 |
+
random_state = gr.Slider(0, 100, 0, step=1, label="Random State")
|
86 |
+
btn = gr.Button(label="Run")
|
87 |
+
with gr.Row():
|
88 |
+
pca_graph = gr.Plot(label="PCA")
|
89 |
+
lda_graph = gr.Plot(label="LDA")
|
90 |
+
nca_graph = gr.Plot(label="NCA")
|
91 |
+
btn.click(
|
92 |
+
fn=reduce_dimensions,
|
93 |
+
inputs=[n_neighbors, random_state],
|
94 |
+
outputs=[pca_graph, lda_graph, nca_graph]
|
95 |
+
)
|
96 |
+
|
97 |
+
if __name__ == '__main__':
|
98 |
+
demo.launch()
|
99 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
matplotlib==3.6.3
|
2 |
+
scikit-learn==1.2.2
|