|
|
|
|
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from sklearn.decomposition import FactorAnalysis, PCA |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.datasets import load_iris |
|
import gradio as gr |
|
from matplotlib import style |
|
plt.switch_backend("agg") |
|
style.use('ggplot') |
|
|
|
font1 = {'family':'Comic Sans MS','color':'#2563EB','size': 14} |
|
|
|
|
|
data = load_iris() |
|
X = StandardScaler().fit_transform(data["data"]) |
|
feature_names = data["feature_names"] |
|
|
|
methods = { |
|
"PCA": PCA(), |
|
"Unrotated FA": FactorAnalysis(), |
|
"Varimax FA": FactorAnalysis(rotation="varimax") |
|
} |
|
|
|
def factor_analysis(method): |
|
|
|
fig1, ax = plt.subplots(figsize=(10, 6), facecolor='none', dpi = 200) |
|
im = ax.imshow(np.corrcoef(X.T), cmap="Spectral", vmin=-1, vmax=1) |
|
|
|
ax.set_xticks([0, 1, 2, 3]) |
|
ax.set_xticklabels(list(feature_names), |
|
rotation=90, fontdict = font1) |
|
ax.set_yticks([0, 1, 2, 3]) |
|
ax.set_yticklabels(list(feature_names), fontdict = font1) |
|
plt.grid(False) |
|
plt.colorbar(im).ax.tick_params() |
|
ax.set_title("Iris feature correlation matrix", |
|
fontdict=font1, size = 18, |
|
color = "white", pad = 20, |
|
bbox=dict(boxstyle="round,pad=0.3", |
|
color = "#2563EB")) |
|
plt.tight_layout() |
|
plt.close('all') |
|
|
|
n_comps = 2 |
|
|
|
|
|
fig2, axs = plt.subplots(figsize=(8, 5), facecolor='none', dpi = 200) |
|
plt.grid(False) |
|
fa = methods[method] |
|
fa.set_params(n_components=n_comps) |
|
fa.fit(X) |
|
|
|
components = fa.components_ |
|
|
|
vmax = np.abs(components).max() |
|
axs.imshow(components, cmap="Spectral", vmax=vmax, vmin=-vmax) |
|
axs.set_xticks(np.arange(len(feature_names))) |
|
axs.set_xticklabels(feature_names, fontdict=font1) |
|
axs.set_title(method, |
|
fontdict=font1, size = 18, |
|
color = "white", pad = 20, |
|
bbox=dict(boxstyle="round,pad=0.3", |
|
color = "#2563EB")) |
|
axs.set_yticks([0, 1]) |
|
axs.set_yticklabels(["Comp. 1", "Comp. 2"], fontdict=font1) |
|
|
|
plt.tight_layout() |
|
plt.close('all') |
|
|
|
return fig1, fig2, components |
|
|
|
intro = """<h1 style="text-align: center;">π€ <strong>Factor Analysis (with rotation) to visualize patterns</strong> π€</h1> |
|
""" |
|
desc = """<h3 style="text-align: left;"> Investigating the Iris dataset, we see that sepal length, petal length and petal width are highly correlated. |
|
Sepal width is less redundant. Matrix decomposition techniques can uncover these latent patterns. |
|
<br><br>Applying rotations to the resulting components does not inherently improve the predictive value of the derived latent space, |
|
but can help visualise their structure; here, for example, the varimax rotation, |
|
which is found by maximizing the squared variances of the weights, |
|
finds a structure where the second component only loads positively on sepal width. |
|
<br></h3> |
|
""" |
|
|
|
made ="""<div style="text-align: center;"> |
|
<p>Made with β€</p>""" |
|
|
|
link = """<div style="text-align: center;"> |
|
<a href="https://scikit-learn.org/stable/auto_examples/decomposition/plot_varimax_fa.html#sphx-glr-auto-examples-decomposition-plot-varimax-fa-py" target="_blank" rel="noopener noreferrer"> |
|
Demo is based on this script from scikit-learn documentation</a>""" |
|
|
|
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", |
|
secondary_hue="sky", |
|
neutral_hue="neutral", |
|
font = gr.themes.GoogleFont("Roboto")), |
|
title="Factor-Analysis-with-rotation") as demo: |
|
gr.HTML(intro) |
|
gr.HTML(desc) |
|
method = gr.Radio(["PCA", "Unrotated FA", "Varimax FA"], label = "Choose method to show on the plot:", value = "PCA") |
|
btn = gr.Button() |
|
with gr.Box(): |
|
with gr.Column(): |
|
components = gr.Dataframe(headers= feature_names,label = "Loadings") |
|
with gr.Row(): |
|
fig1 = gr.Plot(label="Plot covariance of Iris features") |
|
fig2 = gr.Plot(label="Factor analysis") |
|
btn.click(fn=factor_analysis, inputs=method, outputs=[fig1, fig2, components]) |
|
gr.HTML(made) |
|
gr.HTML(link) |
|
|
|
demo.launch() |