import gradio as gr import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt from datasets import load_dataset from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix matplotlib.use('Agg') ################################################################################ # SUGGESTED_DATASETS: These must actually exist on huggingface.co/datasets # # "scikit-learn/iris" -> A small, classic Iris dataset with a "train" split # "uci/wine" -> Another small dataset with a "train" split # "SKIP/ENTER_CUSTOM" -> Placeholder to let the user enter a custom dataset ID ################################################################################ SUGGESTED_DATASETS = [ "scikit-learn/iris", "uci/wine", "SKIP/ENTER_CUSTOM" ] def update_columns(dataset_id, custom_dataset_id): """ After the user chooses a dataset from the dropdown or enters their own, this function loads the dataset's "train" split, converts it to a DataFrame, and returns the columns. These columns are used to populate the Label and Feature selectors in the UI. """ if dataset_id != "SKIP/ENTER_CUSTOM": final_id = dataset_id else: final_id = custom_dataset_id.strip() try: ds = load_dataset(final_id, split="train") df = pd.DataFrame(ds) cols = df.columns.tolist() message = ( f"**Loaded dataset**: `{final_id}`\n\n" f"**Columns found**: {cols}" ) return ( gr.update(choices=cols, value=None), # label_col dropdown gr.update(choices=cols, value=[]), # feature_cols checkbox group message ) except Exception as e: err_msg = f"**Error loading** `{final_id}`: {e}" return ( gr.update(choices=[], value=None), gr.update(choices=[], value=[]), err_msg ) def train_model(dataset_id, custom_dataset_id, label_column, feature_columns, learning_rate, n_estimators, max_depth, test_size): """ 1. Decide which dataset ID to load (from dropdown or custom). 2. Load that dataset's 'train' split, turn into DataFrame, extract X (features) and y (label). 3. Train a GradientBoostingClassifier on X_train, y_train. 4. Compute accuracy and confusion matrix on X_test, y_test. 5. Plot and return feature importances + confusion matrix heatmap + textual summary. """ # Resolve final dataset ID if dataset_id != "SKIP/ENTER_CUSTOM": final_id = dataset_id else: final_id = custom_dataset_id.strip() # Load dataset -> df ds = load_dataset(final_id, split="train") df = pd.DataFrame(ds) # Validate columns if label_column not in df.columns: raise ValueError(f"Label column '{label_column}' not found in dataset columns.") for fc in feature_columns: if fc not in df.columns: raise ValueError(f"Feature column '{fc}' not found in dataset columns.") # Convert to NumPy arrays X = df[feature_columns].values y = df[label_column].values # Train/test split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=test_size, random_state=42 ) # Instantiate and train GradientBoostingClassifier clf = GradientBoostingClassifier( learning_rate=learning_rate, n_estimators=int(n_estimators), max_depth=int(max_depth), random_state=42 ) clf.fit(X_train, y_train) # Evaluate y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) # Create Matplotlib figure with feature importances + confusion matrix fig, axs = plt.subplots(1, 2, figsize=(10, 4)) # Subplot 1: Feature Importances importances = clf.feature_importances_ axs[0].barh(range(len(feature_columns)), importances, color='skyblue') axs[0].set_yticks(range(len(feature_columns))) axs[0].set_yticklabels(feature_columns) axs[0].set_xlabel("Importance") axs[0].set_title("Feature Importances") # Subplot 2: Confusion Matrix Heatmap im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) axs[1].set_title("Confusion Matrix") plt.colorbar(im, ax=axs[1]) axs[1].set_xlabel("Predicted") axs[1].set_ylabel("True") # Optionally annotate each cell with numeric counts thresh = cm.max() / 2.0 for i in range(cm.shape[0]): for j in range(cm.shape[1]): color = "white" if cm[i, j] > thresh else "black" axs[1].text(j, i, str(cm[i, j]), ha="center", va="center", color=color) plt.tight_layout() # Textual summary text_summary = ( f"**Dataset used**: `{final_id}`\n\n" f"**Label column**: `{label_column}`\n\n" f"**Feature columns**: `{feature_columns}`\n\n" f"**Accuracy**: {accuracy:.3f}\n\n" ) return text_summary, fig ############################################################################### # Gradio UI ############################################################################### with gr.Blocks() as demo: # High-level title and description gr.Markdown( """ # Introduction to Gradient Boosting This Space demonstrates how to train a [GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#gradientboostingclassifier) from **scikit-learn** on **tabular datasets** hosted on the [Hugging Face Hub](https://huggingface.co/datasets). Gradient Boosting is an ensemble machine learning technique that combines many weak learners (usually small decision trees) in an iterative, stage-wise fashion to create a stronger overall model. In each step, the algorithm fits a new weak learner to the current errors of the combined ensemble, effectively allowing the model to focus on the hardest-to-predict data points. By repeatedly adding these specialized trees, Gradient Boosting can capture complex patterns and deliver high predictive accuracy, especially on tabular data. **Put simply, Gradient Boosting makes a big deal out of small anomolies!** **Purpose**: - Easily explore hyperparameters (_learning_rate, n_estimators, max_depth_) and quickly train an ML model on real data. - Visualise model performance via confusion matrix heatmap and a feature importance plot. **Notes**: - The dataset must have a **"train"** split with tabular columns (i.e., no nested structures). - Large datasets may take time to download/train. - The confusion matrix helps you see how predictions compare to ground-truth labels. The diagonal cells show correct predictions; off-diagonal cells indicate misclassifications. - The feature importance plot shows which features the model relies on the most for its predictions. --- **Usage**: 1. Select one of the suggested datasets from the dropdown _or_ enter any valid dataset from the [Hugging Face Hub](https://huggingface.co/datasets). 2. Click **Load Columns** to retrieve the column names from the dataset's **train** split. 3. Choose exactly _one_ **Label column** (the target) and one or more **Feature columns** (the inputs). 4. Adjust hyperparameters (learning_rate, n_estimators, max_depth, test_size). 5. Click **Train & Evaluate** to train a Gradient Boosting model and see its accuracy, feature importances, and confusion matrix. You are now a machine learning engineer, congratulations 🤗 --- """ ) with gr.Row(): dataset_dropdown = gr.Dropdown( label="Choose suggested dataset", choices=SUGGESTED_DATASETS, value=SUGGESTED_DATASETS[0] ) custom_dataset_id = gr.Textbox( label="Or enter a custom dataset ID", placeholder="e.g. user/my_custom_dataset" ) load_cols_btn = gr.Button("Load Columns") load_cols_info = gr.Markdown() with gr.Row(): label_col = gr.Dropdown(choices=[], label="Label column (choose 1)") feature_cols = gr.CheckboxGroup(choices=[], label="Feature columns (choose 1 or more)") # Model Hyperparameters learning_rate_slider = gr.Slider( minimum=0.01, maximum=1.0, value=0.1, step=0.01, label="learning_rate" ) n_estimators_slider = gr.Slider( minimum=50, maximum=300, value=100, step=50, label="n_estimators" ) max_depth_slider = gr.Slider( minimum=1, maximum=10, value=3, step=1, label="max_depth" ) test_size_slider = gr.Slider( minimum=0.1, maximum=0.9, value=0.3, step=0.1, label="test_size fraction (0.1-0.9)" ) train_button = gr.Button("Train & Evaluate") output_text = gr.Markdown() output_plot = gr.Plot() # Link the "Load Columns" button -> update_columns function load_cols_btn.click( fn=update_columns, inputs=[dataset_dropdown, custom_dataset_id], outputs=[label_col, feature_cols, load_cols_info], ) # Link "Train & Evaluate" -> train_model function train_button.click( fn=train_model, inputs=[ dataset_dropdown, custom_dataset_id, label_col, feature_cols, learning_rate_slider, n_estimators_slider, max_depth_slider, test_size_slider ], outputs=[output_text, output_plot], ) demo.launch()