Spaces:
Runtime error
Runtime error
Built the gradio implementation of the example.
Browse files- app.py +78 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Gradio Implementation: Lenix Carter
|
2 |
+
# License: BSD 3-Clause or CC-0
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from sklearn.metrics import r2_score
|
9 |
+
|
10 |
+
from sklearn.model_selection import train_test_split
|
11 |
+
from sklearn.linear_model import LinearRegression
|
12 |
+
|
13 |
+
plt.switch_backend("agg")
|
14 |
+
|
15 |
+
def compare_reg(n_samples, n_features):
|
16 |
+
np.random.seed(42)
|
17 |
+
|
18 |
+
X = np.random.randn(n_samples, n_features)
|
19 |
+
true_coef = 3 * np.random.randn(n_features)
|
20 |
+
|
21 |
+
# Threshold coefficients to render them non-negative
|
22 |
+
true_coef[true_coef < 0] = 0
|
23 |
+
y = np.dot(X, true_coef)
|
24 |
+
|
25 |
+
# Add some noise
|
26 |
+
y += 5 * np.random.normal(size=(n_samples,))
|
27 |
+
|
28 |
+
# Split the data in train set and test set
|
29 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)
|
30 |
+
|
31 |
+
reg_nnls = LinearRegression(positive=True)
|
32 |
+
y_pred_nnls = reg_nnls.fit(X_train, y_train).predict(X_test)
|
33 |
+
r2_score_nnls = r2_score(y_test, y_pred_nnls)
|
34 |
+
|
35 |
+
reg_ols = LinearRegression()
|
36 |
+
y_pred_ols = reg_ols.fit(X_train, y_train).predict(X_test)
|
37 |
+
r2_score_ols = r2_score(y_test, y_pred_ols)
|
38 |
+
|
39 |
+
fig, ax = plt.subplots()
|
40 |
+
ax.plot(reg_ols.coef_, reg_nnls.coef_, linewidth=0, marker=".")
|
41 |
+
|
42 |
+
low_x, high_x = ax.get_xlim()
|
43 |
+
low_y, high_y = ax.get_ylim()
|
44 |
+
low = max(low_x, low_y)
|
45 |
+
high = min(high_x, high_y)
|
46 |
+
ax.plot([low, high], [low, high], ls="--", c=".3", alpha=0.5)
|
47 |
+
ax.set_xlabel("OLS regression coefficients", fontweight="bold")
|
48 |
+
ax.set_ylabel("NNLS regression coefficients", fontweight="bold")
|
49 |
+
|
50 |
+
scores = "The R2 for NNLS is {}\nThe R2 for OLS is {}".format(r2_score_nnls, r2_score_ols)
|
51 |
+
return fig, scores
|
52 |
+
|
53 |
+
title = "Non-negative Least Squares"
|
54 |
+
with gr.Blocks() as demo:
|
55 |
+
gr.Markdown(f" # {title}")
|
56 |
+
gr.Markdown("""
|
57 |
+
This example fits a linear model with positivity constraints on the regression coefficients and compares the estimated coefficients to a classic linear regression.
|
58 |
+
|
59 |
+
This is based on the example [here](https://scikit-learn.org/stable/auto_examples/linear_model/plot_nnls.html#sphx-glr-auto-examples-linear-model-plot-nnls-py).
|
60 |
+
""")
|
61 |
+
with gr.Row():
|
62 |
+
with gr.Column():
|
63 |
+
n_samp = gr.Slider(100, 1000, 200, step=1, label="Number of Samples")
|
64 |
+
n_feat = gr.Slider(3, 100, 50, step=1, label="Number of Features")
|
65 |
+
btn = gr.Button(label="Run")
|
66 |
+
with gr.Column():
|
67 |
+
scores = gr.Textbox(label="R2 Scores")
|
68 |
+
coeff_comp_graph = gr.Plot(label="Comparison of Coefficients")
|
69 |
+
btn.click(
|
70 |
+
fn=compare_reg,
|
71 |
+
inputs=[n_samp, n_feat],
|
72 |
+
outputs=[coeff_comp_graph, scores]
|
73 |
+
)
|
74 |
+
with gr.Row():
|
75 |
+
gr.Markdown("This shows a high degree of correlation between the the regression coefficients of OLS and NNLS. However, we observe that some coefficients in the NNLS regression shrink to 0.")
|
76 |
+
|
77 |
+
if __name__ == '__main__':
|
78 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
matplotlib==3.6.3
|
2 |
+
scikit-learn==1.2.2
|