snehilsanyal
commited on
Commit
Β·
da91a58
1
Parent(s):
65a77d4
Add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
from sklearn import svm, datasets
|
3 |
+
from sklearn.inspection import DecisionBoundaryDisplay
|
4 |
+
|
5 |
+
def plot_svm_classifiers():
|
6 |
+
# import some data to play with
|
7 |
+
iris = datasets.load_iris()
|
8 |
+
# Take the first two features. We could avoid this by using a two-dim dataset
|
9 |
+
X = iris.data[:, :2]
|
10 |
+
y = iris.target
|
11 |
+
|
12 |
+
# we create an instance of SVM and fit out data. We do not scale our
|
13 |
+
# data since we want to plot the support vectors
|
14 |
+
C = 1.0 # SVM regularization parameter
|
15 |
+
models = (
|
16 |
+
svm.SVC(kernel="linear", C=C),
|
17 |
+
svm.LinearSVC(C=C, max_iter=10000),
|
18 |
+
svm.SVC(kernel="rbf", gamma=0.7, C=C),
|
19 |
+
svm.SVC(kernel="poly", degree=3, gamma="auto", C=C),
|
20 |
+
)
|
21 |
+
models = (clf.fit(X, y) for clf in models)
|
22 |
+
|
23 |
+
# title for the plots
|
24 |
+
titles = (
|
25 |
+
"SVC with linear kernel",
|
26 |
+
"LinearSVC (linear kernel)",
|
27 |
+
"SVC with RBF kernel",
|
28 |
+
"SVC with polynomial (degree 3) kernel",
|
29 |
+
)
|
30 |
+
|
31 |
+
# Set-up 2x2 grid for plotting.
|
32 |
+
fig, sub = plt.subplots(2, 2)
|
33 |
+
plt.subplots_adjust(wspace=0.4, hspace=0.4)
|
34 |
+
|
35 |
+
X0, X1 = X[:, 0], X[:, 1]
|
36 |
+
|
37 |
+
for clf, title, ax in zip(models, titles, sub.flatten()):
|
38 |
+
disp = DecisionBoundaryDisplay.from_estimator(
|
39 |
+
clf,
|
40 |
+
X,
|
41 |
+
response_method="predict",
|
42 |
+
cmap=plt.cm.coolwarm,
|
43 |
+
alpha=0.8,
|
44 |
+
ax=ax,
|
45 |
+
xlabel=iris.feature_names[0],
|
46 |
+
ylabel=iris.feature_names[1],
|
47 |
+
)
|
48 |
+
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors="k")
|
49 |
+
ax.set_xticks(())
|
50 |
+
ax.set_yticks(())
|
51 |
+
ax.set_title(title)
|
52 |
+
plt.axis('tight')
|
53 |
+
#plt.show()
|
54 |
+
return fig
|
55 |
+
|
56 |
+
heading = 'π€π§‘π€π Plot different SVM Classifiers on Iris Dataset'
|
57 |
+
|
58 |
+
with gr.Blocks(title = heading, theme= 'snehilsanyal/scikit-learn') as demo:
|
59 |
+
gr.Markdown("# {}".format(heading))
|
60 |
+
gr.Markdown(
|
61 |
+
"""
|
62 |
+
### This demo visualizes different SVM Classifiers on a 2D projection
|
63 |
+
of the Iris dataset. The features to be considered are:
|
64 |
+
<b>1. Sepal length </b>
|
65 |
+
<b>2. Sepal width </b>
|
66 |
+
The SVM Classifiers used for this demo are:
|
67 |
+
<b>1. SVC with linear kernel </b>
|
68 |
+
<b>2. Linear SVC </b>
|
69 |
+
<b>3. SVC with RBF kernel</b>
|
70 |
+
<b>4. SVC with Polynomial (degree 3) kernel</b>
|
71 |
+
"""
|
72 |
+
)
|
73 |
+
gr.Markdown('**[Demo is based on this script from scikit-learn documentation](https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html#sphx-glr-auto-examples-svm-plot-iris-svc-py)**')
|
74 |
+
button = gr.Button(value = 'Visualize different SVM Classifiers on Iris Dataset')
|
75 |
+
button.click(plot_svm_classifiers, outputs = gr.Plot())
|
76 |
+
|
77 |
+
demo.launch()
|