EduardoPacheco
commited on
Commit
·
bf23c3b
1
Parent(s):
9c6a64c
Event listener
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ def plot_validation_curve(x: np.array, ys: list[np.array], yerros: list[np.array
|
|
17 |
fig.add_trace(
|
18 |
go.Scatter(
|
19 |
x=x,
|
20 |
-
y=y,
|
21 |
name=name,
|
22 |
line_color=color
|
23 |
)
|
@@ -39,23 +39,37 @@ def plot_validation_curve(x: np.array, ys: list[np.array], yerros: list[np.array
|
|
39 |
if log_x:
|
40 |
fig.update_xaxes(type="log")
|
41 |
|
42 |
-
fig.update_layout(
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
return fig
|
45 |
|
46 |
|
47 |
|
48 |
-
def app_fn(n_points: int):
|
49 |
X, y = load_digits(return_X_y=True)
|
50 |
subset_mask = np.isin(y, [1, 2]) # binary classification: 1 vs 2
|
51 |
X, y = X[subset_mask], y[subset_mask]
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
train_scores, test_scores = validation_curve(
|
55 |
SVC(),
|
56 |
X,
|
57 |
y,
|
58 |
-
param_name=
|
59 |
param_range=param_range,
|
60 |
scoring="accuracy",
|
61 |
n_jobs=-1,
|
@@ -72,7 +86,8 @@ def app_fn(n_points: int):
|
|
72 |
[train_scores_std, test_scores_std],
|
73 |
["Training score", "Cross-validation score"],
|
74 |
["orange", "navy"],
|
75 |
-
title="Validation Curve with SVM for
|
|
|
76 |
)
|
77 |
|
78 |
return fig
|
@@ -90,12 +105,21 @@ with gr.Blocks(title=title) as demo:
|
|
90 |
[Original Example](https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html#sphx-glr-auto-examples-model-selection-plot-validation-curve-py)
|
91 |
"""
|
92 |
)
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
n_points = gr.inputs.Slider(5, 100, 5, 5,label="Number of points")
|
95 |
-
btn = gr.Button("Run")
|
96 |
fig = gr.Plot(label="Validation Curve")
|
97 |
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
demo.launch()
|
|
|
17 |
fig.add_trace(
|
18 |
go.Scatter(
|
19 |
x=x,
|
20 |
+
y=np.round(y, 3),
|
21 |
name=name,
|
22 |
line_color=color
|
23 |
)
|
|
|
39 |
if log_x:
|
40 |
fig.update_xaxes(type="log")
|
41 |
|
42 |
+
fig.update_layout(
|
43 |
+
title=title,
|
44 |
+
xaxis_title="Hyperparameter",
|
45 |
+
yaxis_title="Accuracy",
|
46 |
+
hovermode="x unified",
|
47 |
+
)
|
48 |
|
49 |
return fig
|
50 |
|
51 |
|
52 |
|
53 |
+
def app_fn(n_points: int, param_name: str):
|
54 |
X, y = load_digits(return_X_y=True)
|
55 |
subset_mask = np.isin(y, [1, 2]) # binary classification: 1 vs 2
|
56 |
X, y = X[subset_mask], y[subset_mask]
|
57 |
|
58 |
+
if param_name=="gamma":
|
59 |
+
param_range = np.logspace(-6, -1, n_points)
|
60 |
+
log_x = True
|
61 |
+
elif param_name=="C":
|
62 |
+
param_range = np.logspace(-2, 0, n_points)
|
63 |
+
log_x = True
|
64 |
+
elif param_name=="kernel":
|
65 |
+
param_range = np.array(["rbf", "linear", "poly", "sigmoid"])
|
66 |
+
log_x = False
|
67 |
+
|
68 |
train_scores, test_scores = validation_curve(
|
69 |
SVC(),
|
70 |
X,
|
71 |
y,
|
72 |
+
param_name=param_name,
|
73 |
param_range=param_range,
|
74 |
scoring="accuracy",
|
75 |
n_jobs=-1,
|
|
|
86 |
[train_scores_std, test_scores_std],
|
87 |
["Training score", "Cross-validation score"],
|
88 |
["orange", "navy"],
|
89 |
+
title=f"Validation Curve with SVM for {param_name} Hyperparameter",
|
90 |
+
log_x=log_x
|
91 |
)
|
92 |
|
93 |
return fig
|
|
|
105 |
[Original Example](https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html#sphx-glr-auto-examples-model-selection-plot-validation-curve-py)
|
106 |
"""
|
107 |
)
|
108 |
+
with gr.Row():
|
109 |
+
n_points = gr.inputs.Slider(5, 100, 5, 5,label="Number of points")
|
110 |
+
param_name = gr.inputs.Dropdown(["gamma", "C", "kernel"], label="Hyperparameter", default="gamma")
|
111 |
+
|
112 |
|
|
|
|
|
113 |
fig = gr.Plot(label="Validation Curve")
|
114 |
|
115 |
+
n_points.release(fn=app_fn, inputs=[n_points, param_name], outputs=[fig])
|
116 |
+
param_name.change(fn=app_fn, inputs=[n_points, param_name], outputs=[fig])
|
117 |
+
# C.change(fn=app_fn, inputs=[n_points, param_name, C, gamma, kernel, degree], outputs=[fig])
|
118 |
+
# gamma.change(fn=app_fn, inputs=[n_points, param_name, C, gamma, kernel, degree], outputs=[fig])
|
119 |
+
# kernel.change(fn=app_fn, inputs=[n_points, param_name, C, gamma, kernel, degree], outputs=[fig])
|
120 |
+
# degree.change(fn=app_fn, inputs=[n_points, param_name, C, gamma, kernel, degree], outputs=[fig])
|
121 |
+
|
122 |
+
|
123 |
+
demo.load(fn=app_fn, inputs=[n_points, param_name], outputs=[fig])
|
124 |
|
125 |
demo.launch()
|