Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.datasets import load_iris
|
4 |
+
from sklearn.pipeline import Pipeline
|
5 |
+
from sklearn.feature_selection import SelectPercentile, f_classif
|
6 |
+
from sklearn.preprocessing import StandardScaler
|
7 |
+
from sklearn.svm import SVC
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from sklearn.model_selection import cross_val_score
|
10 |
+
|
11 |
+
def svm_anova_app(percentiles):
|
12 |
+
X, y = load_iris(return_X_y=True)
|
13 |
+
|
14 |
+
# Add non-informative features
|
15 |
+
rng = np.random.RandomState(0)
|
16 |
+
X = np.hstack((X, 2 * rng.random((X.shape[0], 36))))
|
17 |
+
|
18 |
+
# Create a feature-selection transform, a scaler, and an instance of SVM
|
19 |
+
clf = Pipeline([
|
20 |
+
("anova", SelectPercentile(f_classif)),
|
21 |
+
("scaler", StandardScaler()),
|
22 |
+
("svc", SVC(gamma="auto")),
|
23 |
+
])
|
24 |
+
|
25 |
+
score_means = []
|
26 |
+
score_stds = []
|
27 |
+
|
28 |
+
for p in percentiles:
|
29 |
+
clf.set_params(anova__percentile=float(p))
|
30 |
+
this_scores = cross_val_score(clf, X, y)
|
31 |
+
score_means.append(this_scores.mean())
|
32 |
+
score_stds.append(this_scores.std())
|
33 |
+
|
34 |
+
plt.errorbar(percentiles, score_means, np.array(score_stds))
|
35 |
+
plt.title("Performance of the SVM-Anova varying the percentile of features selected")
|
36 |
+
plt.xticks(np.linspace(0, 100, 11, endpoint=True))
|
37 |
+
plt.xlabel("Percentile")
|
38 |
+
plt.ylabel("Accuracy Score")
|
39 |
+
plt.axis("tight")
|
40 |
+
|
41 |
+
# Save the plot to a file
|
42 |
+
plt.savefig("plot.png")
|
43 |
+
plt.close()
|
44 |
+
|
45 |
+
return "plot.png"
|
46 |
+
|
47 |
+
iface = gr.Interface(
|
48 |
+
fn=svm_anova_app,
|
49 |
+
inputs=gr.inputs.CheckboxGroup(['1', '3', '6', '10', '15', '20', '25', '30', '35', '40', '45', '50', '55', '60', '65', '70', '75', '80', '85', '90', '95', '100'], label="Percentiles"),
|
50 |
+
outputs="image",
|
51 |
+
title="SVM-Anova Performance",
|
52 |
+
description="This example shows how to perform univariate feature selection before running a SVC (support vector classifier) to improve the classification scores. We use the iris dataset (4 features) and add 36 non-informative features. We can find that our model achieves best performance when we select around 10 percent of features. See the original scikit-learn example here: https://scikit-learn.org/stable/auto_examples/svm/plot_svm_anova.html"
|
53 |
+
)
|
54 |
+
|
55 |
+
iface.launch()
|