Spaces:
Sleeping
Sleeping
# Code source: Gaël Varoquaux | |
# License: BSD 3 clause | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn import svm | |
import gradio as gr | |
from matplotlib.colors import ListedColormap | |
plt.switch_backend("agg") | |
font1 = {'family':'DejaVu Sans','size':20} | |
def create_data(random, size_num, x_min, x_max, y_min, y_max): | |
#emulate some random data | |
if random: | |
size_num = int(size_num) | |
x = np.random.uniform(x_min, x_max, size=(size_num, 1)) | |
y = np.random.uniform(y_min, y_max, size=(size_num, 1)) | |
X = np.hstack((x, y)) | |
Y = [0] * int(size_num/2) + [1] * int(size_num/2) | |
else: | |
X = np.c_[ | |
(0.4, -0.7), | |
(-1.5, -1), | |
(-1.4, -0.9), | |
(-1.3, -1.2), | |
(-1.5, 0.2), | |
(-1.2, -0.4), | |
(-0.5, 1.2), | |
(-1.5, 2.1), | |
(1, 1), | |
# -- | |
(1.3, 0.8), | |
(1.5, 0.5), | |
(0.2, -2), | |
(0.5, -2.4), | |
(0.2, -2.3), | |
(0, -2.7), | |
(1.3, 2.8), | |
].T | |
Y = [0] * 8 + [1] * 8 | |
return X, Y | |
# fit the model | |
def clf_kernel(color1, color2, dpi, size_num = None, x_min = None, | |
x_max = None, y_min = None, | |
y_max = None, random = False): | |
if size_num is not None or x_min is not None or x_max is not None or y_min is not None or y_max is not None: | |
random = True | |
X, Y = create_data(random, size_num, x_min, x_max, y_min, y_max) | |
kernels = ["linear", "poly", "rbf"] | |
# plot the line, the points, and the nearest vectors to the plane | |
fig, axs = plt.subplots(1,3, figsize = (16,8), facecolor='none', dpi = res[dpi]) | |
cmap = ListedColormap([color1, color2], N=2, name = 'braincell') | |
for i, kernel in enumerate(kernels): | |
clf = svm.SVC(kernel=kernel, gamma=2) | |
clf.fit(X, Y) | |
axs[i].scatter( | |
clf.support_vectors_[:, 0], | |
clf.support_vectors_[:, 1], | |
s=80, | |
facecolors="none", | |
zorder=10, | |
edgecolors="k", | |
) | |
axs[i].scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=cmap, edgecolors="k") | |
axs[i].axis("tight") | |
x_min = -3 | |
x_max = 3 | |
y_min = -3 | |
y_max = 3 | |
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] | |
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) | |
# Put the result into a color plot | |
Z = Z.reshape(XX.shape) | |
axs[i].pcolormesh(XX, YY, Z > 0, cmap=cmap) | |
axs[i].contour( | |
XX, | |
YY, | |
Z, | |
colors=["k", "k", "k"], | |
linestyles=["--", "-", "--"], | |
levels=[-0.5, 0, 0.5], | |
) | |
axs[i].set_xlim(x_min, x_max) | |
axs[i].set_ylim(y_min, y_max) | |
axs[i].set_xticks(()) | |
axs[i].set_yticks(()) | |
axs[i].set_title('Type of kernel: ' + kernel, | |
color = "white", fontdict = font1, pad=20, | |
bbox=dict(boxstyle="round,pad=0.3", | |
color = "#6366F1")) | |
plt.close() | |
return fig, np.round(X, decimals=2) | |
intro = """<h1 style="text-align: center;">🤗 Introducing SVM-Kernels 🤗</h1> | |
""" | |
desc = """<h3 style="text-align: center;">Three different types of SVM-Kernels are displayed below. | |
The polynomial and RBF are especially useful when the data-points are not linearly separable. </h3> | |
""" | |
notice = """<br><div style = "text-align: left;"> <em>Notice: Run the model on example data or use <strong>Randomize data</strong> | |
button below to check out the model on randomized data-points. Any changes to visual parameters will reset the data!</em></div>""" | |
notice2 = """<br><div style = "text-align: left;"> <em>Notice: The data points are categorized into two distinct classes, and they are evenly distributed on the plots to visually represent these classes.</em></div>""" | |
made ="""<div style="text-align: center;"> | |
<p>Made with ❤</p>""" | |
link = """<div style="text-align: center;"> | |
<a href="https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html#sphx-glr-auto-examples-svm-plot-svm-kernels-py" target="_blank" rel="noopener noreferrer"> | |
Demo is based on this script from scikit-learn documentation</a>""" | |
res = {'Small': 50, 'Medium': 75, 'Large': 100} | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", | |
secondary_hue="violet", | |
neutral_hue="slate", | |
font = gr.themes.GoogleFont("Inter")), | |
title="SVM-Kernels") as demo: | |
gr.HTML(intro) | |
gr.HTML(desc) | |
with gr.Tab("Plotted results"): | |
plot = gr.Plot(label="Kernel comparison:") | |
with gr.Tab("Data coordinates"): | |
gr.HTML(notice2) | |
X = gr.Numpy(headers = ['x','y'], interactive=False) | |
with gr.Column(): | |
with gr.Accordion(label = 'Randomize data'): | |
gr.HTML(notice) | |
samples = gr.Slider(4, 16, value = 8, step = 2, label = "Number of samples:") | |
x_min = gr.Slider(-3, 0, value=-2, step=0.1, label="X Min:") | |
x_max = gr.Slider(0, 3, value=2, step=0.1, label="X Max:") | |
y_min = gr.Slider(-3, 0, value=-2, step=0.1, label="Y Min:") | |
y_max = gr.Slider(0, 3, value=2, step=0.1, label="Y Max:") | |
random = gr.Button("Randomize data") | |
with gr.Accordion(label = "Visual parameters"): | |
with gr.Row(): | |
color1 = gr.ColorPicker(label = 'Pick color one:', value = '#9abfd8') | |
color2 = gr.ColorPicker(label = 'Pick color two:', value = '#371c4b') | |
#dpi = gr.Slider(50, 100, value = 75, step = 1, label = "Set the resolution: ") | |
dpi = gr.Radio(list(res.keys()), value = 'Medium', label = "Select the plot size:") | |
params2 = [color1, color2, dpi] | |
random.click(fn=clf_kernel, inputs=[color1, color2, dpi,samples, x_min, x_max, y_min, y_max], outputs=[plot,X]) | |
for i in params2: | |
i.change(fn=clf_kernel, inputs=[color1, color2,dpi], outputs=[plot, X]) | |
demo.load(fn=clf_kernel, inputs=[color1, color2, dpi], outputs=[plot,X]) | |
gr.HTML(made) | |
gr.HTML(link) | |
demo.launch() |