frenkt commited on
Commit
e881c02
·
1 Parent(s): b5f0e36

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +88 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import matplotlib.pyplot as plt
3
+ import numpy as np
4
+ from sklearn.linear_model import BayesianRidge
5
+
6
+ SEED = 1234
7
+ ORDER = 3
8
+ MAX_SAMPLES = 100
9
+
10
+
11
+ def sin_wave(x: np.array):
12
+ """Sinusoidal wave function"""
13
+ return np.sin(2 * np.pi * x)
14
+
15
+
16
+ def generate_train_data(n_samples: int):
17
+ """Generates sinuosidal data with noise"""
18
+ rng = np.random.RandomState(SEED)
19
+ x_train = rng.uniform(0.0, 1.0, n_samples)
20
+ y_train = sin_wave(x_train) + rng.normal(scale=0.1, size=n_samples)
21
+ X_train = np.vander(x_train, ORDER + 1, increasing=True)
22
+ return x_train, X_train, y_train
23
+
24
+
25
+ def get_app_fn():
26
+ """Returns the demo function with pre-generated data and model"""
27
+ x_test = np.linspace(0.0, 1.0, 100)
28
+ X_test = np.vander(x_test, ORDER + 1, increasing=True)
29
+ y_test = sin_wave(x_test)
30
+ reg = BayesianRidge(tol=1e-6, fit_intercept=False, compute_score=True)
31
+ x_train_full, X_train_full, y_train_full = generate_train_data(MAX_SAMPLES)
32
+
33
+ def app_fn(n_samples: int, alpha_init: float, lambda_init: float):
34
+ """Train a Bayesian Ridge regression model and plot the predicted points"""
35
+
36
+ rng = np.random.RandomState(SEED)
37
+ subset_idx = rng.randint(0, MAX_SAMPLES, n_samples)
38
+
39
+ x_train, X_train, y_train = (
40
+ x_train_full[subset_idx],
41
+ X_train_full[subset_idx],
42
+ y_train_full[subset_idx],
43
+ )
44
+ reg.set_params(alpha_init=alpha_init, lambda_init=lambda_init)
45
+ reg.fit(X_train, y_train)
46
+
47
+ ymean, ystd = reg.predict(X_test, return_std=True)
48
+
49
+ fig, ax = plt.subplots()
50
+ ax.plot(x_test, y_test, color="blue", label="sin($2\\pi x$)")
51
+ ax.scatter(x_train, y_train, s=50, alpha=0.5, label="observation")
52
+ ax.plot(x_test, ymean, color="red", label="predict mean")
53
+ ax.fill_between(
54
+ x_test,
55
+ ymean - ystd,
56
+ ymean + ystd,
57
+ color="pink",
58
+ alpha=0.5,
59
+ label="predict std",
60
+ )
61
+ ax.set_ylim(-1.3, 1.3)
62
+ ax.legend()
63
+ text = "$\\alpha={:.1f}$\n$\\lambda={:.3f}$\n$L={:.1f}$".format(
64
+ reg.alpha_, reg.lambda_, reg.scores_[-1]
65
+ )
66
+ ax.text(0.05, -1.0, text, fontsize=12)
67
+
68
+ return fig
69
+
70
+ return app_fn
71
+
72
+
73
+ title = "Bayesian Ridge Regression"
74
+ with gr.Blocks(title=title) as demo:
75
+ gr.Markdown(f"## {title}")
76
+
77
+ n_samples_input = gr.Slider(minimum=5, maximum=100, value=25, step=1, label="#observations")
78
+ alpha_input = gr.Slider(minimum=0.001, maximum=5, value=1.9, step=0.01, label="alpha_init")
79
+ lambda_input = gr.Slider(minimum=0.001, maximum=5, value=1., step=0.01, label="lambda_init")
80
+ outputs = gr.Plot(label="Output")
81
+ inputs = [n_samples_input, alpha_input, lambda_input]
82
+ app_fn = get_app_fn()
83
+
84
+ n_samples_input.change(fn=app_fn, inputs=inputs, outputs=outputs)
85
+ alpha_input.change(fn=app_fn, inputs=inputs, outputs=outputs)
86
+ lambda_input.change(fn=app_fn, inputs=inputs, outputs=outputs)
87
+
88
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ matplotlib==3.5.3
2
+ numpy==1.24.2
3
+ scikit_learn==1.2.2