import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from itertools import combinations from functools import partial plt.rcParams['figure.dpi'] = 100 from sklearn.datasets import load_iris from sklearn.ensemble import ( RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, ) from sklearn.tree import DecisionTreeClassifier import gradio as gr # ======================================== C1, C2, C3 = '#ff0000', '#ffff00', '#0000ff' CMAP = ListedColormap([C1, C2, C3]) GRANULARITY = 0.05 SEED = 1 N_ESTIMATORS = 30 FEATURES = ["Sepal Length", "Sepal Width", "Petal Length", "Petal Width"] LABELS = ["Setosa", "Versicolour", "Virginica"] MODEL_NAMES = ['DecisionTreeClassifier', 'RandomForestClassifier', 'ExtraTreesClassifier', 'AdaBoostClassifier'] iris = load_iris() MODELS = [ DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=N_ESTIMATORS, n_jobs=-1), ExtraTreesClassifier(n_estimators=N_ESTIMATORS, n_jobs=-1), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=N_ESTIMATORS) ] # ======================================== def create_plot(feature_string, n_estimators, max_depth, model_idx): np.random.seed(SEED) feature_list = feature_string.split(',') feature_list = [s.strip() for s in feature_list] idx_x = FEATURES.index(feature_list[0]) idx_y = FEATURES.index(feature_list[1]) X = iris.data[:, [idx_x, idx_y]] y = iris.target rnd_idx = np.random.permutation(X.shape[0]) X = X[rnd_idx] y = y[rnd_idx] X = (X - X.mean(0)) / X.std(0) model_name = MODEL_NAMES[model_idx] model = MODELS[model_idx] if model_idx != 0: model.n_estimators = n_estimators if model_idx != 3: model.max_depth = max_depth if model_idx == 3: model.estimator.max_depth = max_depth model.fit(X, y) score = round(model.score(X, y), 3) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xrange = np.arange(x_min, x_max, GRANULARITY) yrange = np.arange(y_min, y_max, GRANULARITY) xx, yy = np.meshgrid(xrange, yrange) Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) fig = plt.figure(figsize=(4, 3.5)) ax = fig.add_subplot(111) ax.contourf(xx, yy, Z, cmap=CMAP, alpha=0.65) for i, label in enumerate(LABELS): X_label = X[y==i,:] y_label = y[y==i] ax.scatter(X_label[:, 0], X_label[:, 1], c=[[C1], [C2], [C3]][i]*len(y_label), edgecolor='k', s=40, label=label) ax.set_xlabel(feature_list[0]); ax.set_ylabel(feature_list[1]) ax.legend() ax.set_title(f'{model_name} | Score: {score}') fig.set_tight_layout(True) fig.set_constrained_layout(True) return fig def iter_grid(n_rows, n_cols): for _ in range(n_rows): with gr.Row(): for _ in range(n_cols): with gr.Column(): yield info = ''' # Plot the decision surfaces of ensembles of trees on the Iris dataset This plot compares the **decision surfaces** learned by a decision tree classifier, a random forest classifier, an extra-trees classifier, and by an AdaBoost classifier. There are in total **four features** in the Iris dataset. In this example you can select **two features at a time** for visualization purposes using the dropdown box below. All features are normalized to zero mean and unit standard deviation. Play around with the **number of estimators** in the ensembles and the **max depth** of the trees using the sliders. Created by [@hubadul](https://huggingface.co/huabdul) based on [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_iris.html). ''' with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown(info) selections = combinations(FEATURES, 2) selections = [f'{s[0]}, {s[1]}' for s in selections] dd = gr.Dropdown(selections, value=selections[0], interactive=True, label="Input features") slider_estimators = gr.Slider(1, 100, value=30, step=1, label='n_estimators') slider_max_depth = gr.Slider(1, 50, value=10, step=1, label='max_depth') with gr.Column(scale=2): counter = 0 for _ in iter_grid(2, 2): if counter >= len(MODELS): break plot = gr.Plot(show_label=False) fn = partial(create_plot, model_idx=counter) dd.change(fn, inputs=[dd, slider_estimators, slider_max_depth], outputs=[plot]) slider_estimators.change(fn, inputs=[dd, slider_estimators, slider_max_depth], outputs=[plot]) slider_max_depth.change(fn, inputs=[dd, slider_estimators, slider_max_depth], outputs=[plot]) demo.load(fn, inputs=[dd, slider_estimators, slider_max_depth], outputs=[plot]) counter += 1 demo.launch()