huabdul commited on
Commit
ac8e656
·
1 Parent(s): 5d16733

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +122 -0
app.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import matplotlib.pyplot as plt
3
+ from matplotlib.colors import ListedColormap
4
+ plt.rcParams['figure.dpi'] = 100
5
+
6
+ from sklearn.ensemble import AdaBoostClassifier
7
+ from sklearn.tree import DecisionTreeClassifier
8
+ from sklearn.datasets import make_gaussian_quantiles
9
+ from sklearn.inspection import DecisionBoundaryDisplay
10
+
11
+ import gradio as gr
12
+
13
+ #=======================================================
14
+ C1, C2 = '#ff0000', '#0000ff'
15
+ CMAP = ListedColormap([C1, C2])
16
+ GRANULARITY = 0.05
17
+ #=======================================================
18
+ def get_decision_surface(X, y, model):
19
+ x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
20
+ y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
21
+ xrange = np.arange(x_min, x_max, GRANULARITY)
22
+ yrange = np.arange(y_min, y_max, GRANULARITY)
23
+ xx, yy = np.meshgrid(xrange, yrange)
24
+
25
+ Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
26
+ Z = Z.reshape(xx.shape)
27
+
28
+ return xx, yy, Z
29
+
30
+ def create_plot(x1, y1, x2, y2, cov1, cov2, n1, n2, max_depth, n_estimators):
31
+ #Generate the dataset
32
+ X1, y1 = make_gaussian_quantiles(
33
+ mean=(x1, y1), cov=cov1, n_samples=n1, n_features=2, n_classes=2
34
+ )
35
+ X2, y2 = make_gaussian_quantiles(
36
+ mean=(x2, y2), cov=cov2, n_samples=n2, n_features=2, n_classes=2
37
+ )
38
+ X = np.concatenate((X1, X2))
39
+ y = np.concatenate((y1, -y2 + 1))
40
+
41
+ clf = AdaBoostClassifier(DecisionTreeClassifier(max_depth=max_depth), algorithm="SAMME", n_estimators=n_estimators)
42
+
43
+ clf.fit(X, y)
44
+
45
+ fig = plt.figure(figsize=(12, 5))
46
+ ax = fig.add_subplot(121)
47
+
48
+ xx, yy, Z = get_decision_surface(X, y, clf)
49
+ ax.contourf(xx, yy, Z, cmap=CMAP, alpha=0.65)
50
+
51
+ X1, y1 = X[y==0], y[y==0]
52
+ X2, y2 = X[y==1], y[y==1]
53
+
54
+ ax.scatter(X1[:, 0], X1[:, 1], c=C1, edgecolor='k', s=40, label='Class A')
55
+ ax.scatter(X2[:, 0], X2[:, 1], c=C2, edgecolor='k', s=40, label='Class B')
56
+
57
+ ax.set_xlabel('x'); ax.set_ylabel('y')
58
+ ax.legend()
59
+ ax.set_title(f'AdaBoostClassifier Decision Surface')
60
+
61
+ scores = clf.decision_function(X)
62
+
63
+ ax = fig.add_subplot(122)
64
+ ax.hist(scores[y==0], bins=100, range=(scores.min(), scores.max()), facecolor=C1, label="Class A", alpha=0.5, edgecolor="k")
65
+ ax.hist(scores[y==1], bins=100, range=(scores.min(), scores.max()), facecolor=C2, label="Class B", alpha=0.5, edgecolor="k")
66
+
67
+ ax.set_xlabel('Score'); ax.set_ylabel('Frequency')
68
+ ax.legend()
69
+ ax.set_title('Decision Scores')
70
+
71
+ return fig
72
+
73
+ info = '''
74
+ This example fits an [AdaBoost classifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier) on two non-linearly separable classes. The samples are generated using two [Gaussian quantiles](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_gaussian_quantiles.html#sklearn.datasets.make_gaussian_quantiles) of configurable mean and covariance (see the sliders below).
75
+
76
+ For the first generated Gaussian, the inner half quantile is assigned to Class A and the outer half quantile is assigned to class B. For the second generated quantile, the opposite assignment happens (inner = Class B, outer = Class A).
77
+
78
+ A histogram of the decision scores of the AdaBoostClassifer is shown below. Values closer to -1 mean a high confidence that the sample belongs to Class A, and values closer to 1 mean a high confidence that the sample belongs to Class B.
79
+
80
+ Use the controls below to change the Gaussian distribution parameters, number of generated samples in each Gaussian distribution, and the classifier's max_depth and n_estimators.
81
+ '''
82
+ with gr.Blocks(analytics_enabled=False) as demo:
83
+ gr.Markdown(info)
84
+
85
+ with gr.Row():
86
+ with gr.Column():
87
+ s_x1 = gr.Slider(-10, 10, value=0, step=0.1, label='Mean x1')
88
+ with gr.Column():
89
+ s_y1 = gr.Slider(-10, 10, value=0, step=0.1, label='Mean y1')
90
+ with gr.Row():
91
+ with gr.Column():
92
+ s_x2 = gr.Slider(-10, 10, value=2, step=0.1, label='Mean x2')
93
+ with gr.Column():
94
+ s_y2 = gr.Slider(-10, 10, value=2, step=0.1, label='Mean y2')
95
+
96
+ with gr.Row():
97
+ with gr.Column():
98
+ s_cov1 = gr.Slider(0.01, 5, value=1, step=0.01, label='Covariance 1')
99
+ with gr.Column():
100
+ s_cov2 = gr.Slider(0.01, 5, value=2, step=0.01, label='Covariance 2')
101
+
102
+ with gr.Row():
103
+ with gr.Column():
104
+ s_n_samples1 = gr.Slider(1, 1000, value=200, step=1, label='n_samples 1')
105
+ with gr.Column():
106
+ s_n_samples2 = gr.Slider(1, 1000, value=300, step=1, label='n_samples 2')
107
+
108
+ with gr.Row():
109
+ with gr.Column():
110
+ s_max_depth = gr.Slider(1, 50, value=1, step=1, label='AdaBoostClassifier max_depth')
111
+ with gr.Column():
112
+ s_n_estimators = gr.Slider(1, 500, value=300, step=1, label='AdaBoostClassifier n_estimators')
113
+
114
+ btn = gr.Button('Submit')
115
+
116
+ plot = gr.Plot(label='Decision Surfaces & Histogram of Scores')
117
+
118
+ btn.click(create_plot, inputs=[s_x1, s_y1, s_x2, s_y2, s_cov1, s_cov2, s_n_samples1, s_n_samples2, s_max_depth, s_n_estimators], outputs=[plot])
119
+ demo.load(create_plot, inputs=[s_x1, s_y1, s_x2, s_y2, s_cov1, s_cov2, s_n_samples1, s_n_samples2, s_max_depth, s_n_estimators], outputs=[plot])
120
+
121
+ demo.launch(share=True, debug=True)
122
+ #=======================================================